Pollinator responses to farmland habitat features: one-size does not fit all

Authors

DOI:

https://doi.org/10.26786/1920-7603(2024)753

Keywords:

Pollinators, Habitat quality, Farmland ecology, Abundance, Species richness, Flowers

Abstract

  1. Globally, pollinating insects face significant pressure, largely due to intensively managed agricultural systems. There has been considerable focus on the provision of resources for pollinators in agricultural landscapes, but without understanding how existing farmland habitats affect pollinators there is a risk these conservation actions could fail.
  2. The aim of this study was to explore the relationships between the quantity, diversity, and quality of on-farm habitats with pollinator communities. To meet this aim, pollinator, floral and habitat features were assessed at twenty-nine sites, encompassing both livestock and crop systems, at a range of farming intensities, in two regions of Ireland.
  3. Results showed that the three main taxonomic pollinator groups (hoverflies, social bees, and solitary bees) were inconsistent in their responses to habitat and environmental variables. Hoverflies were negatively associated with farms with increasing amounts of linear feature and fewer drainage ditches, whereas bumblebees were positively associated with crop farms and the number of grassy margins, drainage ditches and hedgerows at a site. Solitary bees were negatively associated with crop farms and positively associated with high floral species richness. At a species level, community analysis showed that within taxonomic groups, individual species responded differently to environmental variables.
  4. This study demonstrates that different farm types and habitat features impact pollinator groups differently. One-size does not fit all, thus on-farm conservation actions should be designed with knowledge of taxon-specific responses to maximise benefits. The quantity and diversity of essential habitats are important along with the quality of those features in terms of their capacity to provide sufficient resources for pollinators.

References

Ahmed KSD (2021) Evaluating the ecosystem function of selected dipteran families and their role as indicators of farm habitat quality in Ireland (Thesis). NUI Galway.

Ahmed KSD, Volpato A, Day MF, Mulkeen CJ, O’Hanlon A, Carey J, Williams C, Ruas S, Moran J, Rotchés-Ribalta R, ÓhUallacháin D, Stout JC, Hodge S, White B, Gormally MJ (2021) Linear habitats across a range of farming intensities contribute differently to dipteran abundance and diversity. Insect Conservation & Diversity 14, 335–347. DOI: https://doi.org/10.1111/icad.12455

Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807. DOI: https://doi.org/10.1111/j.0030-1299.2008.16987.x

Ball SG, Morris R (2015) Britain’s Hoverflies: A Field Guide - Revised and Updated Second Edition. Princeton University Press. DOI: https://doi.org/10.1515/9781400866021

Bartoń K (2022) MuMIn: Multi-Model Inference. R package version 1.47.5. https://CRAN.R-project.org/package=MuMIn

Beekman M, Oldroyd BP (2018) Different bees, different needs: How nest-site requirements have shaped the decision-making processes in homeless honeybees (Apis spp.). Philosophical Transactions of the Royal Society B 373, 1–9. DOI: https://doi.org/10.1098/rstb.2017.0010

Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution, 18(4), 182-188. DOI: https://doi.org/10.1016/S0169-5347(03)00011-9

Biesmeijer JC, Roberts SP, Reemer M, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313, 351–354. DOI: https://doi.org/10.1126/science.1127863

Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. Journal of Applied Ecology 51, 890–898. DOI: https://doi.org/10.1111/1365-2664.12257

Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York. DOI: https://doi.org/10.1007/978-1-4419-7976-6

Bottero I, Hodge S, Stout, J (2021) Taxon-specific temporal shifts in pollinating insects in mass-flowering crops and field margins in Ireland. Journal of Pollination Ecology 28, 90–107. DOI: https://doi.org/10.26786/1920-7603(2021)628

Brooks M, Bolker B, Kristensen, K, Maechler M, Magnusson A, McGillycuddy M, Skaug H, Nielsen A, Berg C, Bentham K, van Sadat N, Lüdecke D, Lenth R, O’Brien J, Geyer CJ, Jagan M, Wiernik B (2022) glmmTMB: Generalized Linear Mixed Models using Template Model Builder.

Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference, 2nd ed. Springer, New York.

Byrne F, delBarco-Trillo J (2019) The effect of management practices on bumblebee densities in hedgerow and grassland habitats. Basic and Applied Ecology 35, 28–33. DOI: https://doi.org/10.1016/j.baae.2018.11.004

Christmann S (2022) Regard and protect ground-nesting pollinators as part of soil biodiversity. Ecological Applications 32, e2564. DOI: https://doi.org/10.1002/eap.2564

Cole LJ, Kleijn D, Dicks LV, Potts SG, Albrecht M, Balzan MV, Bartomeous I, Bebeli PJ, Bevk D, Biesmeijer JC, Chlebo R, Dàutart, A, Emmanouil N, Hartfield C, Holland JM, Holzdchuh A, Knober NTJ, Kovács-Hostyânszki A, Mandelik Y, Panou H, Paxton RJ, Petanidou T, Pinheriro de Varvalho MAA, Rundlöf M, Sarthou J-P, Stavrinides MC, Suso MJ, Szentgyörgyi H, Vaissière BE, Varanva A, Vilá M, Zemeckis R, Scheper J (2019) A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology. 1–14. DOI: https://doi.org/10.1111/1365-2664.13572

Coutinho JGE, Garibaldi LA, Viana BF (2018) The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agriculture, Ecosystems & Environment. 256, 61–73. DOI: https://doi.org/10.1016/j.agee.2017.12.025

Coutinho JGE, Hipólito J, Santos RLS, Moreira EF, Boscolo D, Viana BF (2021). Landscape Structure Is a Major Driver of Bee Functional Diversity in Crops. Frontiers in Ecology & Evolution. DOI: https://doi.org/10.3389/fevo.2021.624835

DAFM (2018). Fact Sheet on Irish Agriculture - August 2018.

Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I, Bommarco R, Carvalheiro LG, Chaplin-Kramer R, Gagic V, Garibaldi LA, Ghazoul J, Grab H, Jonsson M, Karp DS, Letourneau DK, Marini L, Poveda K, Rader R, Smith HG, Takada MB, Taki H, Tamburini G, Tschumi M, […] Steffan-Dewenter I (2019). A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances 5:eaax0121. DOI: https://doi.org/10.1126/sciadv.aax0121

Eeraerts M, Smagghe G, Meeus I (2019). Pollinator diversity, floral resources and semi-natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry. Agriculture, Ecosystems & Environment. 284, 106586. DOI: https://doi.org/10.1016/j.agee.2019.106586

Else G, Edwards M (2018). Handbook of the Bees of the British Isles. Ray Society, London.

Falk S (2015). Field Guide to the Bees of Great Britain and Ireland, UK ed. edition. British Wildlife Publishing, London New York.

Fitzpatrick Ú, Murray TE, Byrne A, Paxton RJ, Brown MJF (2006). Regional red list of Irish Bees. Report to National Parks and Wildlife Service (Ireland) and Environment and Heritage Service (N. Ireland).

Fitzpatrick Ú, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V, Brown MJF (2007). Rarity and decline in bumblebees - A test of causes and correlates in the Irish fauna. Biological Conservation. 136, 185–194. DOI: https://doi.org/10.1016/j.biocon.2006.11.012

Fossitt JA (2000). A Guide to Habitats in Ireland. The Heritage Council, Kilkenny, Ireland.

Garratt MPD, Senapathi D, Coston DJ, Mortimer SR, Potts SG (2017) The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agriculture, Ecosystems & Environment 247, 363–370. DOI: https://doi.org/10.1016/j.agee.2017.06.048

González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, Steffan-Dewenter I, Szentgyörgyi H, Woyciechowski M, Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology & Evolution 28, 524–530. DOI: https://doi.org/10.1016/j.tree.2013.05.008

Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 1–16. DOI: https://doi.org/10.1126/science.1255957

Goulson D, Stout JC (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32, 105–111. DOI: https://doi.org/10.1051/apido:2001115

Graves TA, Janousek WM, Gaulke SM, Nicholas AC, Keinath DA, Bell CM, Cannings S, Hatfield RG, Heron JM, Koch JB, Loffland HL, Richardson LL, Rohde AT, Rykken J, Strange JP, Tronstad LM, Sheffield CS. (2020) Western bumble bee: declines in the continental United States and range-wide information gaps. Ecosphere 11, e03141. DOI: https://doi.org/10.1002/ecs2.3141

Guzman LM, Johnson SA, Mooers AO, M’Gonigle LK (2021) Using historical data to estimate bumble bee occurrence: variable trends across species provide little support for community-level declines. Biological Conservation 257, 109141. DOI: https://doi.org/10.1016/j.biocon.2021.109141

Harmon-Threatt A (2020) Influence of Nesting Characteristics on Health of Wild Bee Communities. Annual Review of Entomology 65, 39–56. DOI: https://doi.org/10.1146/annurev-ento-011019-024955

Hodge S, Schweiger O, Klein AM, Potts SG, Costa C, Albrecht M, de Miranda JR, Mand M, De la Rúa P, Rundlöf M, Attridge E (2022) Design and planning of a transdisciplinary investigation into farmland pollinators: rationale, co-design, and lessons learned. Sustainability 14(17), 10549. DOI: https://doi.org/10.3390/su141710549

Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting bees in cereal fields: Effects of farming system, landscape composition and regional context. Journal of Applied Ecology 44, 41–49. DOI: https://doi.org/10.1111/j.1365-2664.2006.01259.x

IPBES (2016) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S.G. Potts, V. L. Imperatriz-Fonseca, and H. T. Ngo (eds).

Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biological Conservation 109, 165–174. DOI: https://doi.org/10.1016/S0006-3207(02)00131-3

Kendall LK, Mola JM, Portman ZM, Cariveau DP, Smith HG, Bartomeus I (2022) The potential and realized foraging movements of bees are differentially determined by body size and sociality. Ecology 103, e3809. DOI: https://doi.org/10.1002/ecy.3809

Kenna D, Pawar S, Gill RJ (2021) Thermal flight performance reveals impact of warming on bumblebee foraging potential. Functional Ecology 35(11), 2508–2522. DOI: https://doi.org/10.1111/1365-2435.13887

Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvalheiro LG, Chacoff NP, Cunningham SA, Danforth BN, Dudenhöffer JH, Elle E, Gaines HR, Garibaldi LA, Gratton C, Holzschuh A, Isaacs R, Javorek SK, Jha S, Klein AM, Krewenka K, Mandelik Y, Mayfield MM, Morandin L, Neame LA, Otieno M, Park M, Potts SG, Rundlöf M, Saez A, Steffan-Dewenter I, Taki H, Viana BF, Westphal C, Wilson JK, Greenleaf SS, Kremen C (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters 16, 584–599. DOI: https://doi.org/10.1111/ele.12082

Klaus F, Tscharntke T, Bischoff G, Grass I (2021) Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects – evidence from a semi-field experiment. Ecology Letters 24, 668–675. DOI: https://doi.org/10.1111/ele.13683

Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic and Applied Ecology 7, 201–214. DOI: https://doi.org/10.1016/j.baae.2005.07.011

Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608), 303–313. DOI: https://doi.org/10.1098/rspb.2006.3721

Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences 99, 16812–16816. DOI: https://doi.org/10.1073/pnas.262413599

Kubo M, Kobayashi T, Kitahara M, Hayashi A (2009) Seasonal fluctuations in butterflies and nectar resources in a semi-natural grassland near Mt. Fuji, central Japan. Biodiversity and Conservation 18, 229–246. DOI: https://doi.org/10.1007/s10531-008-9471-8

Larkin M, Stanley DA (2021) Impacts of management at a local and landscape scale on pollinators in semi-natural grasslands. Journal of Applied Ecology 1–10. DOI: https://doi.org/10.1111/1365-2664.13990

Le Féon V, Poggio SL, Torretta JP, Bertrand C, Molina GAR, Burel F, Baudry J, Ghersa CM (2016) Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. Journal of Natural History 50, 1175–1196. DOI: https://doi.org/10.1080/00222933.2015.1113315

Mallinger RE, Gibbs J, Gratton C (2016) Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods. Landscape Ecology 31, 1523–1535. DOI: https://doi.org/10.1007/s10980-015-0332-z

Meyer B, Jauker F, Steffan-Dewenter I (2009) Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic and Applied Ecology 10, 178–186. DOI: https://doi.org/10.1016/j.baae.2008.01.001

Moquet L, Laurent E, Bacchetta R, Jacquemart A (2018) Conservation of hoverflies (Diptera, Syrphidae) requires complementary resources at the landscape and local scales. Insect Conservation and Diversity 11, 72–87. DOI: https://doi.org/10.1111/icad.12245

Moreira EF, Santos RL da S, Penna UL, Angel-Coca C, de Oliveira FF, Viana BF (2016) Are pan traps colors complementary to sample community of potential pollinator insects? Journal of Insect Conservation 20, 583–596. DOI: https://doi.org/10.1007/s10841-016-9890-x

Nieto-Romero M, Oteros-Rozas E, González JA, Martín-López B (2014) Exploring the knowledge landscape of ecosystem services assessments in Mediterranean agroecosystems: Insights for future research. Environmental Science & Policy 37, 121–133. DOI: https://doi.org/10.1016/j.envsci.2013.09.003

O’Connor RS, Kunin WE, Garratt MPD, Potts SG, Roy HE, Andrews C, Jones CM, Peyton JM, Savage J, Harvey MC, Morris RKA, Roberts SPM, Wright I, Vanbergen AJ, Carvell C (2019) Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods in Ecology and Evolution 10, 2129–2140. DOI: https://doi.org/10.1111/2041-210X.13292

Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, Caceres MD, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette MH, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon J (2022) vegan: Community Ecology Package.

Ollerton J, Erenler H, Edwards M, Crockett R (2014) Pollinator declines. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–2. DOI: https://doi.org/10.1126/science.1257259

Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120, 321–326. DOI: https://doi.org/10.1111/j.1600-0706.2010.18644.x

Portman ZM, Bruninga-Socolar B, Cariveau DP (2020) The State of Bee Monitoring in the United States: A Call to Refocus Away from Bowl Traps and towards More Effective Methods. Annals of the Entomological Society of America 113, 337–342. DOI: https://doi.org/10.1093/aesa/saaa010

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution 25, 345–353. DOI: https://doi.org/10.1016/j.tree.2010.01.007

Potts SG, Vulliamy B, Roberts S, O’Toole C, Dafni A, Ne’eman G, Willmer P (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecological Entomology 30, 78–85. DOI: https://doi.org/10.1111/j.0307-6946.2005.00662.x

Potts SG, Woodcock BA, Roberts SPM, Tscheulin T, Pilgrim ES, Brown VK, Tallowin JR (2009) Enhancing pollinator biodiversity in intensive grasslands. Journal of Applied Ecology 46, 369–379. DOI: https://doi.org/10.1111/j.1365-2664.2009.01609.x

Power EF, Stout JC (2011) Organic dairy farming: Impacts on insect-flower interaction networks and pollination. Journal of Applied Ecology 48, 561–569. DOI: https://doi.org/10.1111/j.1365-2664.2010.01949.x

Rader R, Cunningham SA, Howlett BG, Inouye DW (2020) Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. Annual Review of Entomology 65, 391–407. DOI: https://doi.org/10.1146/annurev-ento-011019-025055

Raderschall CA, Bommarco R, Lindström SAM, Lundin O (2021) Landscape crop diversity and semi-natural habitat affect crop pollinators, pollination benefit and yield. Agriculture, Ecosystems & Environment 306, 107189. DOI: https://doi.org/10.1016/j.agee.2020.107189

Requier F, Leonhardt SD (2020) Beyond flowers: including non-floral resources in bee conservation schemes. Journal of Insect Conservation 24, 5–16. DOI: https://doi.org/10.1007/s10841-019-00206-1

Rodríguez-Gasol N (2020) The ecology of predatory hoverflies as ecosystem-service providers in agricultural systems. Biological Control 15. DOI: https://doi.org/10.1016/j.biocontrol.2020.104405

Rotchés-Ribalta R, Ruas S, Ahmed KD, Gormally M, Moran J, Stout J, White B, hUallacháin DÓ (2021) Assessment of semi-natural habitats and landscape features on Irish farmland: New insights to inform EU Common Agricultural Policy implementation. Ambio 50, 346–359. DOI: https://doi.org/10.1007/s13280-020-01344-6

Ruas S, Kelly R, Ahmed KSD, Maher S, O’Hora E, Volpato A, Ó hUallacháin D, Gormally MJ, Stout JC, Moran J (2022) Does Landscape Structure Affect the Presence of Woodland Specialist Pollinators in Farmland? Implications for Agri-Environment Scheme Design. Biological & Environmental: Proceedings of the Royal Irish Academy 122, 17–37. DOI: https://doi.org/10.1353/bae.2022.0000

Russo L, Fitzpatrick Ú, Larkin M, Mullen S, Power E, Stanley D, White C, O’Rourke A, Stout JC (2022) Conserving diversity in Irish plant–pollinator networks. Ecology and Evolution 12, e9347. DOI: https://doi.org/10.1002/ece3.9347

Schirmel J, Albrecht M, Bauer P-M, Sutter L, Pfister SC, Entling MH (2018) Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. Journal of Applied Ecology 55, 1747–1758. DOI: https://doi.org/10.1111/1365-2664.13095

Schweiger O, Musche M, Bailey D, Billeter R, Diekötter T, Hendrickx F, Herzog F, Liira J, Maelfait J-P, Speelmans M, Dziock F (2007) Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos Copenhagen, Denmark 116, 461–472. DOI: https://doi.org/10.1111/j.2007.0030-1299.15372.x

Speight MCD (2015) Species accounts of European Syrphidae (Diptera). Syrph the Net, the Database of European Syrphidae 83, 291.

Stanley DA, Gunning D, Stout JC (2013) Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: Ecological and economic incentives for pollinator conservation. Journal of Insect Conservation 17, 1181–1189. DOI: https://doi.org/10.1007/s10841-013-9599-z

Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: A field-scale evaluation reveals taxon-specific responses. Journal of Applied Ecology 50, 335–344. DOI: https://doi.org/10.1111/1365-2664.12060

Stubbs A, Falk SJ (2002) British Hoverflies: An Illustrated Identification Guide, 2nd edition. British Entomological & Natural History Society, Reading.

Sutherland JP, Sullivan MS, Poppy GM (2001) Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margin habitats. Agricultural and Forest Entomology 3, 57–64. DOI: https://doi.org/10.1046/j.1461-9563.2001.00090.x

Trzciński P, Piekarska-Boniecka H (2013) Dynamics of predatory syrphidae in the apple orchard and neighbouring shrubberies. Journal of Plant Protection Research 53, 119–123. DOI: https://doi.org/10.2478/jppr-2013-0017

Tscharntke T, Grass I, Wanger TC, Westphal C, Batáry P (2021) Beyond organic farming – harnessing biodiversity-friendly landscapes. Trends in Ecology & Evolution 36, 919–930. DOI: https://doi.org/10.1016/j.tree.2021.06.010

Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity - Ecosystem service management. Ecology Letters 8, 857–874. DOI: https://doi.org/10.1111/j.1461-0248.2005.00782.x

Tschumi M, Albrecht M, Collatz J, Dubsky V, Entling MH, Najar-Rodriguez AJ, Jacot K (2016) Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. Journal of Applied Ecology 53, 1169–1176. DOI: https://doi.org/10.1111/1365-2664.12653

Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SPM, Szentgyörgyi H, Tscheulin T, Vaissière BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring Bee Diversity in Different European Habitats and Biogeographical Regions. Ecological Monographs 78, 653–671. DOI: https://doi.org/10.1890/07-1292.1

Widhiono I, Sudiana E, Sucianto ET (2016) Insect pollinator diversity along a habitat quality gradient on Mount Slamet, Central Java, Indonesia. Biodiversitas 17, 746–752. DOI: https://doi.org/10.13057/biodiv/d170250

Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation 143, 2280–2291. DOI: https://doi.org/10.1016/j.biocon.2010.03.024

Williams NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecological Applications 17(3), 910-921. DOI: https://doi.org/10.1890/06-0269

Wood TJ, Holland JM, Goulson D (2015) Pollinator-friendly management does not increase the diversity of farmland bees and wasps. Biological Conservation 187, 120–126. DOI: https://doi.org/10.1016/j.biocon.2015.04.022

Woodcock BA, Garratt MPD, Powney GD, Shaw RF, Osborne JL, Soroka J, Lindström SAM, Stanley D, Ouvrard P, Edwards ME, Jauker F, McCracken ME, Zou Y, Potts SG, Rundlöf M, Noriega JA, Greenop A, Smith HG, Bommarco R, van der Werf W, Stout JC, Steffan-Dewenter I, Morandin L, Bullock JM, Pywell RF (2019) Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications 10, 1481. DOI: https://doi.org/10.1038/s41467-019-09393-6

Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N (2012) Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems & Environment 159, 112-122. DOI: https://doi.org/10.1016/j.agee.2012.06.020

Wu P, Dai P, Wang M, Feng S, Olhnuud A, Xu H, Li X, Liu Y (2021) Improving Habitat Quality at the Local and Landscape Scales Increases Wild Bee Assemblages and Associated Pollination Services in Apple Orchards in China. Frontiers in Ecology and Evolution 9, 1–10. DOI: https://doi.org/10.3389/fevo.2021.621469

Xie Z, Shebl MA, Pan D, Wang J (2020) Synergistically positive effects of brick walls and farmlands on Anthophora waltoni populations. Agricultural and Forest Entomology 22, 328–337. DOI: https://doi.org/10.1111/afe.12384

Zamorano J, Bartomeus I, Grez AA, Garibaldi LA (2020) Field margin floral enhancements increase pollinator diversity at the field edge but show no consistent spillover into the crop field: a meta-analysis. Insect Conservation and Diversity 13, 519–531. DOI: https://doi.org/10.1111/icad.12454

Zattara EE, Aizen MA (2021) Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123. DOI: https://doi.org/10.1016/j.oneear.2020.12.005

Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biological Conservation 143, 669–676. DOI: https://doi.org/10.1016/j.biocon.2009.12.003

Halictus rubicundus

Published

2024-03-06

How to Cite

Maher, S., Kelly, R., Hodge, S., O’Hora, E., Ruas, S., Rotches-Ribalta, R., … Stout, J. (2024). Pollinator responses to farmland habitat features: one-size does not fit all . Journal of Pollination Ecology, 36, 29–46. https://doi.org/10.26786/1920-7603(2024)753

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.