Protecting Farmland Pollinators: Whole Farm Scorecard - Experiences and Recommendations




bees, biodiversity, farmland pollinators, Results Based Payments


Protecting Farmland Pollinators is about identifying small actions that farmers can take that will allow biodiversity to coexist within a productive farming system. Farmers in Ireland recognise the importance of pollinators, but farmland has experienced wide-scale loss of wild pollinators over the last fifty years.

By working closely with 40 farmers, management practices that benefit bees and hoverflies on Irish farmland were identified, and a whole farm pollinator scoring system was developed. Using a whole farm pollinator scorecard, farmers receive ‘pollinator points’ each year based on the amount and quality of pollinator friendly habitat maintained and/or created and, each year, farmers receive a results-based payment that relates to the points.

Irish farms have great potential to improve both the quantity and quality of biodiversity friendly habitats without negatively impacting on farm productivity. Thirty-one farmers increased their score between year one and year three of the results-based payment and four farms more than tripled their score. The median whole farm pollinator score for the 40 farms increased from 25,696 in year one to 33,572 in year two (31% increase), to, 40,211 pollinator points in year three (56% increase). Each farm type (beef, dairy, mixed and arable) increased their median score over the three years and dairy and arable farms showed the largest increase.

This project has helped farmers better understand and engage with nature on their land and has created a measurable system for improving habitats for biodiversity on farms that is accessible to all and has the potential to be rolled out on a wider scale.


Biffi S, Chapman PJ, Grayson RP, Ziv G (2023) Planting hedgerows: Biomass carbon sequestration and contribution towards net-zero targets. Science of The Total Environment 892:164482. DOI:

Bird Life Schweiz (2021) Obstgarten Farnsber. Accessed 20 Sept 2023.

Bishop GA, Fijen TPM, Desposato BN, Scheper J, Kleijn D (2023) Hedgerows have contrasting effects on pollinators and natural enemies and limited spillover effects on apple production. Agriculture, Ecosystems & Environment 346:108364. DOI:

Byrne F, DelBarco-Trillo J (2019) The effect of management practices on bumblebee densities in hedgerow and grassland habitats. Basic and Applied Ecology 35:28–33. DOI:

Central Statistics Office (2016) Environmental Indicators Ireland - Land Use. Accessed 26 Jan 2023.

Central Statistics Office (2021) Census of Agriculture 2020 - Preliminary Results. Accessed 26 Jan 2023.

Chaplin SP, Mills J, Chiswell H (2021) Developing payment-by-results approaches for agri-environment schemes: Experience from an arable trial in England. Land Use Policy 109:105698. DOI:

Cole LJ, Kleijn D, Dicks L V, Stout JC, Potts SG, Albrecht M, Balzan M V, Bartomeus I, Bebeli PJ, Bevk D, Biesmeijer JC, Chlebo R, Dautartė A, Emmanouil N, Hartfield C, Holland JM, Holzschuh A, Knoben NTJ, Kovács-Hostyánszki A, Mandelik Y, Panou H, Paxton RJ, Petanidou T, de Carvalho MAA, Rundlöf M, Sarthou J-P, Stavrinides MC, Suso MJ, Szentgyörgyi H, Vaissière BE, Varnava A, Vilà M, Zemeckis R, Scheper J (2020) A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology 57:681–694. DOI:

Cullen MG, Bliss L, Stanley DA, Carolan JC (2023) Investigating the effects of glyphosate on the bumblebee proteome and microbiota. Science of The Total Environment 864:161074. DOI:

Cummins S, Finn JA, Richards KG, Lanigan GJ, Grange G, Brophy C, Cardenas LM, Misselbrook TH, Reynolds CK, Krol DJ (2021) Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Science of The Total Environment 792:148163. DOI:

Department of Agriculture Food and the Marine (2022) Annual Review and Outlook for Agriculture, Food and the Marine 2022. Dublin.

Dunford B, Parr S (2020) Farming for conservation in the Burren. In: O’Rourke E, Finn JA (eds) Farming for Nature: The Role of Results-based Payments, Farming fo. Teagasc and National Parks and Wildlife Service, Dublin, pp 1–155.

Ebeling A, Klein A-M, Schumacher J, Weisser WW, Tscharntke T (2008) How does plant richness affect pollinator richness and temporal stability of flower visits. Oikos 117:1808–1815. DOI:

Environmental Protection Agency (2006) Environment in Focus 2006 Environmental Indicators for Ireland. Wexford, Ireland.

European Union (2023) European Innovation Partnerships (EIPs). Accessed 25 Feb 2023.

Froidevaux JSP, Broyles M, Jones G (2019) Moth responses to sympathetic hedgerow management in temperate farmland. Agriculture, Ecosystems & Environment 270–271:55–64. DOI:

Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. Journal of Animal Ecology 71:757–764. DOI:

Goulson D, Hanley ME, Darvill B, Ellis JS, Knight ME (2005) Causes of rarity in bumblebees. Biological Conservation 122:1–8. DOI:

Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. SciencExpress:1–16. DOI:

Graham L, Gaulton R, Gerard F, Staley JT (2018) The influence of hedgerow structural condition on wildlife habitat provision in farmed landscapes. Biological Conservation 220:122–131. DOI:

Grange G, Finn JA, Brophy C (2021) Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. Journal of Applied Ecology 58:1864–1875. DOI:

Hannon LE, Sisk TD (2009) Hedgerows in an agri-natural landscape: Potential habitat value for native bees. Biological Conservation 142:2140–2154. DOI:

Heath SK, Soykan CU, Velas KL, Kelsey R, Kross SM (2017) A bustle in the hedgerow: Woody field margins boost on farm avian diversity and abundance in an intensive agricultural landscape. Biological Conservation 212:153–161. DOI:

Henry M, Beguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) Response to Comment on “A Common Pesticide Decreases Foraging Success and Survival in Honey Bees.” Science 337:1453. DOI:

Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361. DOI:

Hopwood JL (2008) The contribution of roadside grassland restorations to native bee conservation. Biological Conservation 141:2632–2640. DOI:

Image M, Gardner E, Clough Y, Kunin WE, Potts SG, Smith HG, Stone GN, Westbury DB, Breeze TD (2022) Which interventions contribute most to the net effect of England’s agri-environment schemes on pollination services? Landscape Ecology 38:271–291. DOI:

Jordon MW, Willis KJ, Bürkner P-C, Petrokofsky G (2022) Rotational grazing and multispecies herbal leys increase productivity in temperate pastoral systems – A meta-analysis. Agriculture, Ecosystems & Environment 337:108075. DOI:

Kavanagh S, Henry M, Stout JC, White B (2021) Neonicotinoid residues in honey from urban and rural environments. Environmental Science and Pollution Research 28:28179–28190. DOI:

Keenleyside C, Radley G, Tucker G, Underwood E, Hart K, Allen B, Menadue H (2014) Results-based payments for biodiversity guidance handbook: Designing and implementing results-based agri-environment schemes 2014–20. Prepared for the European Commission, DG Environment, Institute for European Environmental Policy.

Kells AR, Goulson D (2003) Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biological Conservation 109:165–174. DOI:

Klein AM, Vaissiére BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B 274. DOI:

Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF (2011) Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biological Conservation 144:1816–1825. DOI:

Larkin M, Stanley DA (2021) Impacts of management at a local and landscape scale on pollinators in semi-natural grasslands. Journal of Applied Ecology 58:2505–2514. DOI:

Lomba A, Moreira F, Klimek S, Jongman RHG, Sullivan C, Moran J, Poux X, Honrado JP, Pinto-Correia T, Plieninger T, McCracken DI (2020) Back to the future: rethinking socioecological systems underlying high nature value farmlands. Frontiers in Ecology and the Environment 18:36–42. DOI:

Massfeller A, Meraner M, Hüttel S, Uehleke R (2022) Farmers’ acceptance of results-based agri-environmental schemes: A German perspective. Land Use Policy 120:106281. DOI:

McCarthy KM, McAloon CG, Lynch MB, Pierce KM, Mulligan FJ (2020) Herb species inclusion in grazing swards for dairy cows - A systematic review and meta-analysis. Journal of Dairy Science 103:1416–1430. DOI:

McLoughlin D (2018) Pilot results-based agri-environment measures in Ireland and Navarra; End of project technical synthesis report. A report published for the European Forum on Nature Conservation and Pastoralism.

Moran J, Byrne D, Carlier J, Dunford B, Finn JA, Huallacháin D, Sullivan CA (2021) Management of high nature value farmland in the republic of ireland: 25 years evolving toward locally adapted results-orientated solutions and payments. Ecology and Society 26:20 DOI:

Murray TE, Fitzpatrick Ú, Byrne A, Fealy R, Brown MJF, Paxton RJ (2012) Local-scale factors structure wild bee communities in protected areas. Journal of Applied Ecology 49:998–1008. DOI:

National Biodiversity Data Centre (2015) All-Ireland Pollinator Plan 2015-2020 Series No. 2. Waterford.

National Biodiversity Data Centre (2016) Creating wild pollinator nesting habitat. All-Ireland Pollinator Plan, How-to-guide 1. National Biodiversity Data Centre Series No. 5. Waterford.

National Biodiversity Data Centre (2020) Working Together for Biodiversity - tales from the All-Ireland Pollinator Plan. Waterford.

National Biodiversity Data Centre (2021a) All-Ireland Pollinator Plan 2021-2025 Series no. 25. Waterford.

National Biodiversity Data Centre (2021b) All-Ireland Bumblebee Monitoring Scheme Annual Report. Waterford.

Nichols RN, Holland JM, Goulson D (2022) A novel farmland wildflower seed mix attracts a greater abundance and richness of pollinating insects than standard mixes. Insect Conservation and Diversity:1–15. DOI:

Noordijk J, Delille K, Schaffers AP, Sýkora K V (2009) Optimizing grassland management for flower-visiting insects in roadside verges. Biological Conservation 142:2097–2103. DOI:

O’Neill FH, Martin JR, Devaney FM, Perrin PM (2013) The Irish semi-natural grasslands survey 2007-2012. Dublin.

Page, Nathaniel Constantinescu, Mihai Demeter, Laszlo Keenleyside, Clunie Popa R, Sutcliffe L (2019) on-technical Summary: Results-based agri-environment schemes for support of broad biodiversity at landscape scale in Transylvanian High Nature Value farmland, Romania. Report prepared for the European Union, Agreement No. 07.027722/2014/697044/SUB/B2.

Pärtel M, Bruun HH, Sammul M (2005) Biodiversity in temperate European grasslands: origin and conservation. Grassland Science in Europe 10:1–14.

Potts S, Wilmer P (1997) Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecological Entomology 22:319–328. DOI:

Power EF, Stout JC (2011) Organic dairy farming: impacts on insect–flower interaction networks and pollination. Journal of Applied Ecology 48:561–569. DOI:

Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GKS, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein A-M, Kleijn D, Krishnan S, Lemos CQ, Lindström SAM, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, de O. Pereira N, Pisanty G, Potts SG, Reemer M, Rundlöf M, Sheffield CS, Scheper J, Schüepp C, Smith HG, Stanley DA, Stout JC, Szentgyörgyi H, Taki H, Vergara CH, Viana BF, Woyciechowski M (2016) Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences 113:146–151. DOI:

Rands SA, Whitney HM (2011) Field Margins , Foraging Distances and Their Impacts on Nesting Pollinator Success. PloS one 6:e25971. DOI:

Rodríguez E, Clemente-Orta G, Crisol-Martínez E, Gutiérrez I, van der Blom J, González M (2023) Aphid suppression by natural enemies in hedgerows surrounding greenhouses in southern Spain. Biological Control 177:105126. DOI:

Santorum V, Breen J (2005) Bumblebee diversity on Irish farmland. Irish journal of agri-environmental research 4:79–90.

Socher SA, Prati D, Boch S, Müller J, Baumbach H, Gockel S, Hemp A, Schöning I, Wells K, Buscot F, Kalko EK V, Linsenmair KE, Schulze ED, Weisser WW, Fischer M (2013) Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology 14:126–136. DOI:

Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: A field-scale evaluation reveals taxon-specific responses. Journal of Applied Ecology 50:335–344. DOI:

Svensson B, Lagerlof J, Svensson BG (2000) Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agriculture Ecosystems & Environment 77:247–255. DOI:

The Convention on Biological Diversity (2006) The Convention on Biological Diversity Article 2. Use of Terms.

Tscharntke T, Gathmann A, Steffan-Dewenter I (1998) Bioindication Using Trap-Nesting Bees and Wasps and Their Natural Enemies: Community Structure and Interactions. Journal of Applied Ecology 35:708–719. DOI:

Wallace EE, McShane G, Tych W, Kretzschmar A, McCann T, Chappell NA (2021) The effect of hedgerow wild-margins on topsoil hydraulic properties, and overland-flow incidence, magnitude and water-quality. Hydrological Processes 35:e14098. DOI:

Wilmer P (2011) Pollination and Floral Ecology. Princton University Press, New Jersey. DOI:

Winfree R, Williams NM, Gaines H, Ascher JS, Kremen C (2008) Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. Journal of Applied Ecology 45:793–802. DOI:

Zimmermann J, González A, Jones MB, Brien PO, Stout JC, Green S (2016) Assessing land-use history for reporting on cropland dynamics - A comparison between the Land-Parcel Identification System and traditional inter-annual approaches. Land Use Policy 52:30–40. DOI:



How to Cite

Kavanagh, S., Phelan, N. ., Rodriguez-Gasol, N. ., O’ Brien, S., Stout, J., & Fitzpatrick, Úna. (2023). Protecting Farmland Pollinators: Whole Farm Scorecard - Experiences and Recommendations. Journal of Pollination Ecology, 34, 312–328.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.