Fecal sampling protocol to assess bumble bee health in conservation research
DOI:
https://doi.org/10.26786/1920-7603(2024)783Keywords:
wild bees, parasites, feces, non-lethal sampling, Trypanosomatidae, NosematidaeAbstract
An increasing number of wild bee species are declining or threatened with extinction worldwide. Decline has been proposed to be caused by a combination of threats, including increasing wild bee disease prevalence and pathogen spillover from managed bees that can reduce health of wild bees. Most approaches aiming at characterizing bee health, however, require sacrificing tens to hundreds of individual bees per site or species, with reports of several thousand individuals collected per study. Considering the widespread need to assess bee health, this sampling approach is not sustainable, especially for endangered populations or species. Here, we present a non-destructive protocol to collect bumble bee faeces and assess parasite loads of wild-caught individuals. The standard protocol consists of net-capturing individual bumble bees and placing them in a 10 cm (diameter) petri dish to collect faeces. This fecal screening approach is frequently used in laboratory settings, but much less in the field, which can impair conservation research. When placing bumble bees in a previously refrigerated cooler, we successfully collected faeces for 86% individuals, while the standard protocol, as used in laboratory settings, yielded 76% success in collecting faeces. We also identified cells and spores of two common gut parasites Crithidia spp. and Vairimorpha spp. in faecal samples. The faecal sampling presented here opens future avenues to assess bee pathogen loads using molecular techniques, while collected faeces could also be used to assess bee health more broadly, including bee microbiota and bee diet.
References
Aldercotte AH, Simpson DT, Winfree R (2022) Crop visitation by wild bees declines over an 8-year time series: A dramatic trend, or just dramatic between-year variation? Insect Conservation and Diversity 15:522-533. https://doi.org/10.1111/icad.12589 DOI: https://doi.org/10.1111/icad.12589
Averill AL, Couto AV, Andersen JC, Elkinton JS (2021) Parasite Prevalence May Drive the Biotic Impoverishment of New England (USA) Bumble Bee Communities. Insects 12. https://doi.org/10.3390/insects12100941 DOI: https://doi.org/10.3390/insects12100941
Babin A, Schurr F, Riviere MP, Chauzat MP, Dubois E (2022) Specific detection and quantification of three microsporidia infecting bees, Nosema apis, Nosema ceranae, and Nosema bombi, using probe-based real-time PCR. European Journal of Protistology 86:125935. https://doi.org/10.1016/j.ejop.2022.125935 DOI: https://doi.org/10.1016/j.ejop.2022.125935
Bailes EJ, Bagi J, Coltman J, Fountain MT, Wilfert L, Brown MJF (2020) Host density drives viral, but not trypanosome, transmission in a key pollinator. Proceedings of the Royal Society B: Biological Sciences 287:20191969. https://doi.org/10.1098/rspb.2019.1969 DOI: https://doi.org/10.1098/rspb.2019.1969
Baron GL, Jansen VAA, Brown MJF, Raine NE (2017) Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology & Evolution 1:1308-1316. https://doi.org/10.1038/s41559-017-0260-1 DOI: https://doi.org/10.1038/s41559-017-0260-1
Biswas S, Bhatt S, Paul S, Modi S, Ghosh T, Habib B, Nigam P, Talukdar G, Pandav B, Mondol S (2019) A practive faeces collection protocol for multidisciplinary research in wildlife science. Current Science 116:1878-1885 https://doi.org/10.18520/cs/v116/i11/1878-1885 DOI: https://doi.org/10.18520/cs/v116/i11/1878-1885
Blaker EA, Strange JP, James RR, Monroy FP, Cobb NS (2014) PCR reveals high prevalence of non/low sporulating Nosema bombi (microsporidia) infections in bumble bees (Bombus) in Northern Arizona. Journal of Invertebrate Pathology 123:25-33. https://doi.org/10.1016/j.jip.2014.09.001 DOI: https://doi.org/10.1016/j.jip.2014.09.001
Botías C, Jones JC, Pamminger T, Bartomeus I, Hughes WOH, Goulson D (2021) Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. Journal of Animal Ecology 90:415-431. https://doi.org/10.1111/1365-2656.13375 DOI: https://doi.org/10.1111/1365-2656.13375
Brown MJF, Loosli R, Schmid-Hempel P (2000) Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91:421-427. https://doi.org/10.1034/j.1600-0706.2000.910302.x DOI: https://doi.org/10.1034/j.1600-0706.2000.910302.x
Burnham PA, Alger SA, Case B, Boncristiani H, Hébert-Dufresne L, Brody AK (2021) Flowers as dirty doorknobs: Deformed wing virus transmitted between Apis mellifera and Bombus impatiens through shared flowers. Journal of Applied Ecology 58:2065-2074. https://doi.org/10.1111/1365-2664.13962 DOI: https://doi.org/10.1111/1365-2664.13962
Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108:662-667. https://doi.org/doi:10.1073/pnas.1014743108 DOI: https://doi.org/10.1073/pnas.1014743108
Cameron SA, Sadd BM (2020) Global Trends in Bumble Bee Health. Annual review of entomology 65:209-232. https://doi.org/10.1146/annurev-ento-011118-111847 DOI: https://doi.org/10.1146/annurev-ento-011118-111847
Chen YP, Pettis JS, Collins A, Feldlaufer MF (2006) Prevalence and transmission of honeybee viruses. Applied and Environmental Microbiology 72:606-611. https://doi.org/10.1128/AEM.72.1.606-611.2006 DOI: https://doi.org/10.1128/AEM.72.1.606-611.2006
Colla SR, Gadallah F, Richardson L, Wagner D, Gall L (2012) Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biodiversity and Conservation 21:3585-3595 https://doi.org/10.1007/s10531-012-0383-2 DOI: https://doi.org/10.1007/s10531-012-0383-2
Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodiversity and Conservation 17:1379-1391. https://doi.org/10.1007/s10531-008-9340-5 DOI: https://doi.org/10.1007/s10531-008-9340-5
Darimont CT, Reimchen TE, Bryan HM, Paquet PC (2008) Faecal-Centric Approaches to Wildlife Ecology and Conservation; Methods, Data and Ethics. Wildlife Biology in Practice 4. https://doi.org/10.2461/wbp.2008.4.7 DOI: https://doi.org/10.2461/wbp.2008.4.7
Figueroa L, Sadd B, Tripodi A, Strange J, Colla S, Adams L, Duennes M, Evans E, Lehmann D, Moylett H, Richardson L, Smith J, Smith T, Spevak E, Inouye DW (2023) Endosymbionts that threaten commercially raised and wild bumble bees (Bombus spp.). Journal of Pollination Ecology 32:14-36. https://doi.org/10.26786/1920-7603(2023)713 DOI: https://doi.org/10.26786/1920-7603(2023)713
Figueroa LL, Grincavitch C, McArt SH (2021) Crithidia bombi can infect two solitary bee species while host survivorship depends on diet. Parasitology 148:435-442. https://doi.org/10.1017/S0031182020002218 DOI: https://doi.org/10.1017/S0031182020002218
Fowler AE, Stone EC, Irwin RE, Adler LS (2020) Sunflower pollen reduces a gut pathogen in worker and queen but not male bumble bees. Ecological Entomology 45:1318-1326 https://doi.org/10.1111/een.12915 DOI: https://doi.org/10.1111/een.12915
Garlin J, Theodorou P, Kathe E, Quezada-Euán JJG, Paxton RJ, Soro A (2022) Anthropogenic effects on the body size of two neotropical orchid bees. BMC Ecology and Evolution 22:94. https://doi.org/10.1186/s12862-022-02048-z DOI: https://doi.org/10.1186/s12862-022-02048-z
Gegear RJ, Otterstatter MC, Thomson JD (2005) Does parasitic infection impair the ability of bumblebees to learn flower-handling techniques? Animal Behaviour 70:209-215. https://doi.org/10.1016/j.anbehav.2004.09.025 DOI: https://doi.org/10.1016/j.anbehav.2004.09.025
Gezon ZJ, Wyman ES, Ascher JS, Inouye DW, Irwin RE (2015) The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods in Ecology and Evolution 6:1044-1054. https://doi.org/10.1111/2041-210X.12375 DOI: https://doi.org/10.1111/2041-210X.12375
Giacomini JJ, Leslie J, Tarpy DR, Palmer-Young EC, Irwin RE, Adler LS (2018) Medicinal value of sunflower pollen against bee pathogens. Scientific Reports 8:14394. https://doi.org/10.1038/s41598-018-32681-y DOI: https://doi.org/10.1038/s41598-018-32681-y
Gibbs J, Joshi NK, Wilson JK, Rothwell NL, Powers K, Haas M, Gut L, Biddinger DJ, Isaacs R (2017) Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards? Environmental Entomology 46:579-588. https://doi.org/10.1093/ee/nvx069 DOI: https://doi.org/10.1093/ee/nvx069
Gillespie S (2010) Factors affecting parasite prevalence among wild bumblebees. Ecological Entomology 35:737-747. https://doi.org/10.1111/j.1365-2311.2010.01234.x DOI: https://doi.org/10.1111/j.1365-2311.2010.01234.x
Gomez-Moracho T, Durand T, Pasquaretta C, Heeb P, Lihoreau M (2021) Artificial Diets Modulate Infection Rates by Nosema ceranae in Bumblebees. Microorganisms 9(1),158. https://doi.org/10.3390/microorganisms9010158 DOI: https://doi.org/10.3390/microorganisms9010158
Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957 https://doi.org/10.1126/science.1255957 DOI: https://doi.org/10.1126/science.1255957
Goulson D, O'Connor S, Park KJ (2018) The impacts of predators and parasites on wild bumblebee colonies. Ecological Entomology 43:168-181. https://doi.org/10.1111/een.12482 DOI: https://doi.org/10.1111/een.12482
Graystock P, Goulson D, Hughes WOH (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences 282:20151371. https://doi.org/doi:10.1098/rspb.2015.1371 DOI: https://doi.org/10.1098/rspb.2015.1371
Graystock P, Ng WH, Parks K, Tripodi AD, Muniz PA, Fersch AA, Myers CR, McFrederick QS, McArt SH (2020) Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nature Ecology & Evolution 4:1358-1367. https://doi.org/10.1038/s41559-020-1247-x DOI: https://doi.org/10.1038/s41559-020-1247-x
Graystock P, Yates K, Evison SEF, Darvill B, Goulson D, Hughes WOH, Osborne J (2013) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology 50:1207-1215. https://doi.org/10.1111/1365-2664.12134 DOI: https://doi.org/10.1111/1365-2664.12134
Grupe AC, 2nd, Quandt CA (2020) A growing pandemic: A review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathog 16:e1008580. https://doi.org/10.1371/journal.ppat.1008580 DOI: https://doi.org/10.1371/journal.ppat.1008580
Guzman LM, Johnson SA, Mooers AO, M'Gonigle LK (2021) Using historical data to estimate bumble bee occurrence: Variable trends across species provide little support for community-level declines. Biological Conservation 257:109141. https://doi.org/10.1016/j.biocon.2021.109141 DOI: https://doi.org/10.1016/j.biocon.2021.109141
Heinrich B (1977) The Physiology of Exercise in the Bumblebee. American Scientist 65:455-465
Jackson HM, Johnson SA, Morandin LA, Richardson LL, Guzman LM, M'Gonigle LK (2022) Climate change winners and losers among North American bumblebees. Biological Letters 18:20210551. https://doi.org/10.1098/rsbl.2021.0551 DOI: https://doi.org/10.1098/rsbl.2021.0551
Jacobson MM, Tucker EM, Mathiasson ME, Rehan SM (2018) Decline of bumble bees in northeastern North America, with special focus on Bombus terricola. Biological Conservation 217:437-445. https://doi.org/10.1016/j.biocon.2017.11.026 DOI: https://doi.org/10.1016/j.biocon.2017.11.026
Jones CM, Brown MJF (2014) Parasites and genetic diversity in an invasive bumblebee. Journal of Animal Ecology 83:1428-1440. https://doi.org/10.1111/1365-2656.12235 DOI: https://doi.org/10.1111/1365-2656.12235
Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences 108:19288-19292. https://doi.org/10.1073/pnas.1110474108 DOI: https://doi.org/10.1073/pnas.1110474108
LoCascio GM, Aguirre L, Irwin RE, Adler LS (2019) Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. Royal Society Open Science 6:190279. https://doi.org/10.1098/rsos.190279 DOI: https://doi.org/10.1098/rsos.190279
Lopez-Uribe MM, Ricigliano VA, Simone-Finstrom M (2020) Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annual Review of Animal Biosciences 8:269-294. https://doi.org/10.1146/annurev-animal-020518-115045 DOI: https://doi.org/10.1146/annurev-animal-020518-115045
Malfi RL, McFrederick QS, Lozano G, Irwin RE, Adler LS (2023) Sunflower plantings reduce a common gut pathogen and increase queen production in common eastern bumblebee colonies. Proceedings of the Royal Society B: Biological Sciences 290:20230055. https://doi.org/doi:10.1098/rspb.2023.0055 DOI: https://doi.org/10.1098/rspb.2023.0055
McNeil DJ, McCormick E, Heimann AC, Kammerer M, Douglas MR, Goslee SC, Grozinger CM, Hines HM (2020) Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Scientific Reports 10:22306. https://doi.org/10.1038/s41598-020-78119-2 DOI: https://doi.org/10.1038/s41598-020-78119-2
Miller ZJ, Lynn A, Oster C, Piotter E, Wallace M, Sullivan LL, Galen C (2022) Unintended Consequences? Lethal Specimen Collection Accelerates with Conservation Concern. American Entomologist 68:48-55. https://doi.org/10.1093/ae/tmac057 DOI: https://doi.org/10.1093/ae/tmac057
Montero‐Castaño A, Koch JBU, Lindsay TTT, Love B, Mola JM, Newman K, Sharkey JK (2022) Pursuing best practices for minimizing wild bee captures to support biological research. Conservation Science and Practice 4. https://doi.org/10.1111/csp2.12734 DOI: https://doi.org/10.1111/csp2.12734
Ngor L, Palmer-Young EC, Burciaga Nevarez R, Russell KA, Leger L, Giacomini SJ, Pinilla-Gallego MS, Irwin RE, McFrederick QS (2020) Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 147:1290-1304. https://doi.org/10.1017/S0031182020001018 DOI: https://doi.org/10.1017/S0031182020001018
Otti O, Schmid-Hempel P (2007) Nosema bombi: A pollinator parasite with detrimental fitness effects. Journal of Invertebrate Pathology 96:118-124. https://doi.org/10.1016/j.jip.2007.03.016 DOI: https://doi.org/10.1016/j.jip.2007.03.016
Parreno MA, Alaux C, Brunet JL, Buydens L, Filipiak M, Henry M, Keller A, Klein AM, Kuhlmann M, Leroy C, Meeus I, Palmer-Young E, Piot N, Requier F, Ruedenauer F, Smagghe G, Stevenson PC, Leonhardt SD (2022) Critical links between biodiversity and health in wild bee conservation. Trends in Ecology & Evolution 37:309-321. https://doi.org/10.1016/j.tree.2021.11.013 DOI: https://doi.org/10.1016/j.tree.2021.11.013
Pislak Ocepek M, Toplak I, Zajc U, Bevk D (2021) The Pathogens Spillover and Incidence Correlation in Bumblebees and Honeybees in Slovenia. Pathogens 10. https://doi.org/10.3390/pathogens10070884 DOI: https://doi.org/10.3390/pathogens10070884
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232:8-27. https://doi.org/10.1016/j.biocon.2019.01.020 DOI: https://doi.org/10.1016/j.biocon.2019.01.020
Siviter H, Johnson AK, Muth F (2021) Bumblebees Exposed to a Neonicotinoid Pesticide Make Suboptimal Foraging Decisions. Environmental Entomology. https://doi.org/10.1093/ee/nvab087 DOI: https://doi.org/10.1093/ee/nvab087
Strange J, Colla S, Davies Adams L, Duennes M, Evans E, Figueroa L, Lehmann D, Moylett H, Richardson L, Sadd B, Smith J, Smith T, Tripodi A, Inouye DW (2023) An evidence-based rationale for a North American commercial bumble bee clean stock certification program. Journal of Pollination Ecology 32:1-13. https://doi.org/10.26786/1920-7603(2023)721 DOI: https://doi.org/10.26786/1920-7603(2023)721
Su R, Dai W, Yang Y, Wang X, Gao R, He M, Zhao C, Mu J (2022) Introduced honey bees increase host plant abundance but decrease native bumble bee species richness and abundance. Ecosphere 13. https://doi.org/10.1002/ecs2.4085 DOI: https://doi.org/10.1002/ecs2.4085
Tian T, Piot N, Meeus I, Smagghe G (2018) Infection with the multi-host micro-parasite Apicystis bombi (Apicomplexa: Neogregarinorida) decreases survival of the solitary bee Osmia bicornis. Journal of Invertebrate Pathology 158:43-45. https://doi.org/10.1016/j.jip.2018.09.005 DOI: https://doi.org/10.1016/j.jip.2018.09.005
Trillo A, Bartomeus I, Ortiz-Sánchez FJ, Belmonte J, Vilà M (2021) No detectable impact of parasite-infected commercial bumblebees on wild bees in areas adjacent to greenhouses despite diet overlap. Agriculture, Ecosystems & Environment 320. https://doi.org/10.1016/j.agee.2021.107604 DOI: https://doi.org/10.1016/j.agee.2021.107604
Tronstad L, Bell C, Crawford M (2022) Choosing collection methods and sample sizes for monitoring bees. Agricultural and Forest Entomology 24:531-539. https://doi.org/10.1111/afe.12518 DOI: https://doi.org/10.1111/afe.12518
Tsvetkov N, MacPhail VJ, Colla SR, Zayed A (2021) Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola. Molecular Ecology 30:4220-4230. https://doi.org/10.1111/mec.16049 DOI: https://doi.org/10.1111/mec.16049
Wagner DL (2020) Insect Declines in the Anthropocene. Annual Review of Entomology 65:457-480. https://doi.org/10.1146/annurev-ento-011019-025151 DOI: https://doi.org/10.1146/annurev-ento-011019-025151
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N (2020) Bee Viruses: Routes of Infection in Hymenoptera. Frontiers in Microbiology 11. https://doi.org/10.3389/fmicb.2020.00943 DOI: https://doi.org/10.3389/fmicb.2020.00943
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mathilde L. Tissier, Cole Blair, Sarah MacKell, Lynn S. Adler, J. Scott MacIvor, Patrick Bergeron, Carolyn Callaghan, Geneviève Labrie, Sheila Colla, Valérie Fournier
This work is licensed under a Creative Commons Attribution 4.0 International License.