Floral symmetry affects bumblebee approach consistency in artificial flowers
DOI:
https://doi.org/10.26786/1920-7603(2016)10Abstract
Bilateral symmetry has evolved from radial symmetry in several floral lineages, and multiple hypotheses have been proposed to account for the success of this floral plan. One of these hypotheses posits that bilateral symmetry (or, more generally, a reduced number of planes of floral symmetry) allows for more precise pollen placement on pollinators. Greater precision would maximize the efficacy of pollen transfer to conspecifics, while minimizing reproductive interference amongst plant species. Despite the intuitiveness of this hypothesis, it has little experimental support. Here, we tested whether a reduction in the number of floral planes of symmetry (as in the transition from radial to bilateral symmetry) increases the potential precision of pollen placement. We analyzed video recordings of bumblebees (Bombus impatiens) visiting artificial flowers to determine whether consistency in flower entry angle differed between radial (round) and disymmetric (rectangular) “flowers”. We observed more consistent entry angles for disymmetric flowers than for radial flowers, with entry angles to radial flowers 43% more variable on average (standard deviations of 30° vs. 21°). Bees trained on flowers with an intermediate (square) morphology exhibited a slight, non-significant preference for radial symmetry over disymmetry. Our results show that disymmetry—an evolutionarily intermediate form of floral symmetry—has the potential to increase pollen transfer to conspecific stigmas, relative to radial symmetry. Thus, evolutionary reduction in the number of planes of floral symmetry likely provides benefits in terms of pollen delivery, as suggested by the pollen-placement-accuracy hypothesis. These findings offer insight into the evolution of floral symmetry.
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Brett Matthew Culbert, Jessica Forrest
This work is licensed under a Creative Commons Attribution 4.0 International License.
JPE is an open access journal which means that all content is freely available without charge to the user or his/her institution.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
To assure a broader targeted audience, content will be included into databases (such as EBSCO) and directories (such as DOAJ).