Buzzing benefits: How multi-species pollination boosts strawberry yield, quality, and nutritional value
DOI:
https://doi.org/10.26786/1920-7603(2024)788Keywords:
Hoverflies, Bumble bee, Vitamin C, Niche complementarity, Fruit productionAbstract
A diverse assemblage of insect visitors can provide functional complementarity within plant pollination due to differences in characteristics such as their physical traits, visitation rate and foraging time of day or year. In a horticultural context, greater functional complementarity may play a crucial role in enhancing fruit yield and quality by improving pollination. We tested whether the identity of the crop pollinators (bumblebee Bombus terrestris and hoverfly Eupeodes corollae) independently and additively influenced commercial strawberry yield, quality, and nutritional parameters such as vitamin C and sugar concentration. Fragaria x ananassa “Malling Champion” plants received pollination treatments of either a) “control”: self-pollination where pollinators were excluded, b) “bee”: bumblebee Bombus terrestris, c) “hoverfly”: Eupeodes corollae, d) “combined”: both B. terrestris and E. corollae. Hoverflies and bumblebees exhibited distinct visitation patterns throughout the day, establishing a functional complementary relationship that enhances pollination success and crop output as well as vitamin C concentrations. Strawberries from plants receiving pollination by bumblebees, or bumblebees and hoverflies combined, had higher yields of higher marketable quality. They also had measurably higher vitamin C content than strawberries from plants pollinated by hoverflies alone, or the control (self-pollinating) plants. This study advances our understanding of niche complementarity and its impact on fruit yield and quality. By elucidating the behavioural and temporal dynamics of pollinators, we provide valuable insights for optimizing pollination strategies in agricultural contexts. Our findings highlight the significance of behavioural factors, such as handling time and number of visits, in determining fruit quality.
References
Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid - a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science 8:613. https://doi.org/10.3389/fpls.2017.00613 DOI: https://doi.org/10.3389/fpls.2017.00613
Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9:1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x DOI: https://doi.org/10.1111/j.1461-0248.2006.00963.x
Bartomeus I, Park MG, Gibbs J, Danforth BN, Lakso AN, Winfree R (2013) Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecology Letters 16:1331–1338. https://doi.org/10.1111/ele.12170 DOI: https://doi.org/10.1111/ele.12170
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1–48. https://doi.org/10.18637/jss.v067.i01 DOI: https://doi.org/10.18637/jss.v067.i01
Bommarco R, Marini L, Vaissière BE (2012) Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia 169:1025–1032. https://doi.org/10.1007/s00442-012-2271-6 DOI: https://doi.org/10.1007/s00442-012-2271-6
Brittain C, Williams N, Kremen C, Klein A-M (2013) Synergistic effects of non-Apis bees and honeybees for pollination services. Proceedings of the Royal Society B: Biological Sciences 280:20122767. https://doi.org/10.1098/rspb.2012.2767 DOI: https://doi.org/10.1098/rspb.2012.2767
Chaplin-Kramer R, Tuxen-Bettman K, Kremen C (2011) Value of wildland habitat for supplying pollination services to Californian agriculture. Rangelands 33:33–41. https://doi.org/10.2111/1551-501X-33.3.33 DOI: https://doi.org/10.2111/1551-501X-33.3.33
Cook BJ, Wagner RM, Peterson TL (1991) The hindgut muscularis of the stable fly, Stomoxys Calcitrans: Some of its structural, motile and pharmacological properties. Journal of Insect Physiology, 37(9), pp.635–645. https://doi.org/10.1016/0022-1910(91)90040-7 DOI: https://doi.org/10.1016/0022-1910(91)90040-7
Cordenunsi BR, Nascimento JRO, Lajolo FM (2003) Physio-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry 83(2):167–173. https://doi.org/10.1016/s0308-8146(03)00059-1 DOI: https://doi.org/10.1016/S0308-8146(03)00059-1
Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJ, Strain JJ, Favell D, Fletcher J (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture 80(7);825–860. https://doi.org/10.1002/(sici)1097-0010(20000515)80:7%3C825::aid-jsfa598%3E3.0.co;2-6 DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.3.CO;2-Y
Dewhirst RA, Fry SC (2018). The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species. Biochemical Journal 475(21):3451–3470. https://doi.org/10.1042/BCJ20180688 DOI: https://doi.org/10.1042/BCJ20180688
Fenech M, Amaya I, Valpuesta V, Botella MA (2019) Vitamin C content in fruits: biosynthesis and regulation. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.02006 DOI: https://doi.org/10.3389/fpls.2018.02006
Fontaine C, Dajoz I, Meriguet J, Loreau M (2005) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLOS Biology 4:e1. https://doi.org/10.1371/journal.pbio.0040001 DOI: https://doi.org/10.1371/journal.pbio.0040001
Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054. https://doi.org/10.1890/12-1620.1 DOI: https://doi.org/10.1890/12-1620.1
Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, Ngo HT, Azzu N, Sáez A, Åström J, An J, Blochtein B, Buchori D, Chamorro García FJ, Oliveira da Silva F, Devkota K, de Fátima Ribeiro M, Freitas L, Gaglianone MC, Goss M, Irshad M, Kasina Md, Pacheco Filho AJS, Piedade Kiill LH, Kwapong P, Nates Parra G, Pires C, Pires V, Rawal RS, Rizali A, Saraiva AM, Veldtman R, Viana BF, Witter S, Zhang H (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388-391. https://doi.org/10.1126/science.aac7287 DOI: https://doi.org/10.1126/science.aac7287
Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. https://doi.org/10.1126/science.1230200 DOI: https://doi.org/10.1126/science.1230200
Gudowska A, Cwajna A, Marjańska E, Moroń D (2024) Pollinators enhance the production of a superior strawberry – a global review and meta-analysis. Agriculture, Ecosystems & Environment 362:108815. https://doi.org/10.1016/j.agee.2023.108815 DOI: https://doi.org/10.1016/j.agee.2023.108815
Hall MA, Nimmo DG, Cunningham SA, Walker K, Bennett AF (2019) The response of wild bees to tree cover and rural land use is mediated by species’ traits. Biological Conservation 231:1–12. https://doi.org/10.1016/j.biocon.2018.12.032 DOI: https://doi.org/10.1016/j.biocon.2018.12.032
Herrera ECV (1990) Fruit growth and development of `Ideal’ and `Western’ Pecans. Journal of the American Society for Horticultural Science 115(6):915-923. https://doi.org/10.21273/JASHS.115.6.915 DOI: https://doi.org/10.21273/JASHS.115.6.915
Herrmann J, Beye H, Broise C, Hartlep H, Diekötter T (2019) Positive effects of the pollinators Osmia cornuta (Megachilidae) and Lucilia sericata (Calliphoridae) on strawberry quality. Arthropod-Plant Interactions 13:71-77. https://doi.org/10.1007/s11829-018-9636-7 DOI: https://doi.org/10.1007/s11829-018-9636-7
Hodgkiss D, Brown MJF, Fountain MT (2018) Syrphine hoverflies are effective pollinators of commercial strawberry. Journal of Pollination Ecology 22:55–66. https://doi.org/10.26786/1920-7603(2018)five DOI: https://doi.org/10.26786/1920-7603(2018)five
Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences 275:2283–2291. https://doi.org/10.1098/rspb.2008.0405 DOI: https://doi.org/10.1098/rspb.2008.0405
Jeavons E, Chevrie O, Le Lann C, Renault D, Floch M, Bourgeois T, Bodiguel R, Fontaine-Breton T, van Baaren J (2022) Exploitative competition for floral resources reduces sugar intake but differently impacts the foraging behaviour of two non-bee flower visitors. Oikos 2022 [online] (accessed 27 February 2024). https://doi.org/10.1111/oik.08576 DOI: https://doi.org/10.1111/oik.08576
Klatt BK, Holzschuh A, Westphal C, Clough Y, Smit I, Pawelzik E, Tscharntke T (2014) Bee pollination improves crop quality, shelf life and commercial value. Proceedings of the Royal Society B: Biological Sciences 281:20132440. https://doi.org/10.1098/rspb.2013.2440 DOI: https://doi.org/10.1098/rspb.2013.2440
Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein A-M, Kremen C, M’Gonigle LK, Rader R, Ricketts TH, Williams NM, Lee Adamson N, Ascher JS, Báldi A, Batáry P, Benjamin F, Biesmeijer JC, Blitzer EJ, Bommarco R, Brand MR, Bretagnolle V, Button L, Cariveau DP, Chifflet R, Colville JF, Danforth BN, Elle E, Garratt MPD, Herzog F, Holzschuh A, Howlett BG, Jauker F, Jha S, Knop E, Krewenka KM, Le Féon V, Mandelik Y, May EA, Park MG, Pisanty G, Reemer M, Riedinger V, Rollin O, Rundlöf M, Sardiñas HS, Scheper J, Sciligo AR, Smith HG, Steffan-Dewenter I, Thorp R, Tscharntke T, Verhulst J, Viana BF, Vaissière BE, Veldtman R, Ward KL, Westphal C, Potts SG (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications 6:7414. https://doi.org/10.1038/ncomms8414 DOI: https://doi.org/10.1038/ncomms8414
Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology 20:207–220. https://doi.org/10.1016/S0925-5214(00)00133-2 DOI: https://doi.org/10.1016/S0925-5214(00)00133-2
Lee JS, Seinivasan R, Il Guk K, Ashurosh B, Young SO, Myunghee K (2018) Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars. Food Research International 109:614-625 https://doi.org/10.1016/j.foodres.2018.04.047 DOI: https://doi.org/10.1016/j.foodres.2018.04.047
Lima-Silva V, Rosado A, Amorim-Silva V, Muñoz-Mérida A, Pons C, Bombarely A, Trelles O, Fernández-Muñoz R, Granell A, Valpuesta V, Botella MÁ (2012) Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187. https://doi.org/10.1186/1471-2164-13-187 DOI: https://doi.org/10.1186/1471-2164-13-187
Lin Y-T, Wang L-K, Hung K-C, Chang C-Y, Wu L-C, Ho C-H, Chen J-Y (2022) Prevalence and predictors of insufficient plasma vitamin C in a subtropical region and its associations with risk factors of cardiovascular diseases: a retrospective cross-sectional study. Nutrients 14:1108. https://doi.org/10.3390/nu14051108 DOI: https://doi.org/10.3390/nu14051108
MacInnis G, Forrest JRK (2019) Pollination by wild bees yields larger strawberries than pollination by honeybees. Journal of Applied Ecology 56:824–832. https://doi.org/10.1111/1365-2664.13344 DOI: https://doi.org/10.1111/1365-2664.13344
Martin CD, Fountain MT, Brown MJF (2019) Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. Agriculture, Ecosystems & Environment 281:124–133. https://doi.org/10.1016/j.agee.2019.04.007 DOI: https://doi.org/10.1016/j.agee.2019.04.007
Miñarro M, García D (2018) Complementarity and redundancy in the functional niche of cider apple pollinators. Apidologie 49:789–802. https://doi.org/10.1007/s13592-018-0600-4 DOI: https://doi.org/10.1007/s13592-018-0600-4
Nitsch JP (1950) Growth and Morphogenesis of the Strawberry as Related to Auxin. American Journal of Botany, 37:211–211. https://doi.org/10.2307/2437903 DOI: https://doi.org/10.2307/2437903
Pion S, de Oliveira D, Paradis PO (1980) Pollinating agents and productivity of the Redcoat strawberry cultivar. Phytoprotection 61:72-78. https://api.semanticscholar.org/CorpusID:82596129
Pisanty G, Richter R, Martin T, Dettman J, Cardinal S (2022) Molecular phylogeny, historical biogeography and revised classification of andrenine bees (Hymenoptera: Andrenidae). Molecular Phylogenetics and Evolution 170:107151. https://doi.org/10.1016/j.ympev.2021.107151 DOI: https://doi.org/10.1016/j.ympev.2021.107151
Samnegård U, Hambäck PA, Smith HG (2019) Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. Royal Society Open Science 6:190326. https://doi.org/10.1098/rsos.190326 DOI: https://doi.org/10.1098/rsos.190326
Sánchez M, Velásquez Y, González M, Cuevas J (2022) Activity and foraging behaviour of the hoverfly Eristalinus aeneus (Scopoli, 1763) in protected cultivation of mango (Mangifera indica L.). Bulletin of Entomological Research 112:101–109. https://doi.org/10.1017/S0007485321000717 DOI: https://doi.org/10.1017/S0007485321000717
Van de Velde F, Pirovani ME, Cámara MS, Güemes DR, Bernardi CM del H (2012) Optimization and validation of a UV–HPLC method for vitamin C determination in strawberries (Fragaria x ananassa Duch.), using experimental designs. Food Analytical Methods 5:1097–1104. https://doi.org/10.1007/s12161-011-9347-5 DOI: https://doi.org/10.1007/s12161-011-9347-5
Van Oystaeyen A, Tuyttens E, Boonen S, De Smedt L, Bellinkx S, Wäckers F, Pekas A (2022) Dual purpose: predatory hoverflies pollinate strawberry crops and protect them against the strawberry aphid, Chaetospihon fragaefolii. Pest Management Science 78:3051–3060. https://doi.org/10.1002/ps.6931 DOI: https://doi.org/10.1002/ps.6931
Vaudo AD, Tooker JF, Grozinger CM, Patch HM (2015) Bee nutrition and floral resource restoration. Current Opinion in Insect Science 10:133–141. https://doi.org/10.1016/j.cois.2015.05.008 DOI: https://doi.org/10.1016/j.cois.2015.05.008
Venjakob C, Klein A-M, Ebeling A, Tscharntke T, Scherber C (2016) Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions. Ecology and Evolution 6:2249–2261. https://doi.org/10.1002/ece3.2026 DOI: https://doi.org/10.1002/ece3.2026
Wietzke A, Westphal C, Gras P, Kraft M, Pfohl K, Karlovsky P, Pawelzik E, Tscharntke T, Smit I (2018) Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, Ecosystems & Environment 258:197–204. https://doi.org/10.1016/j.agee.2018.01.036 DOI: https://doi.org/10.1016/j.agee.2018.01.036
Willmer P (2011) Pollination and Floral Ecology | Princeton University Press. [online] URL: https://press.princeton.edu/books/hardcover/9780691128610/pollination-and-floral-ecology DOI: https://doi.org/10.23943/princeton/9780691128610.001.0001
Woodward JR (1972) Physical and chemical changes in developing strawberry fruits. Journal of the Science of Food and Agriculture 23:465–473. https://doi.org/10.1002/jsfa.2740230406 DOI: https://doi.org/10.1002/jsfa.2740230406
Yahia EM, García-Solís P, Celis MEM (2019) Contribution of fruits and vegetables to human nutrition and health. In: Postharvest Physiology and Biochemistry of Fruits and Vegetables. Elsevier, pp 19–45. https://doi.org/10.1016/B978-0-12-813278-4.00002-6 DOI: https://doi.org/10.1016/B978-0-12-813278-4.00002-6
Zhao Y, Vlasselaer L, Ribeiro B, Terzoudis K, Van den Ende W, Hertog M, Nicolaï B, De Coninck B (2022) Constitutive defense mechanisms have a major role in the resistance of woodland strawberry leaves against Botrytis cinerea. Frontiers in Plant Science, 13:912667. https://doi.org/10.3389/fpls.2022.912667 DOI: https://doi.org/10.3389/fpls.2022.912667

Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Katie James, Simon Springate, Dr Steven J Harte, Dudley Farman, Dr Richard Colgan, Sarah E. J. Arnold

This work is licensed under a Creative Commons Attribution 4.0 International License.