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Abstract—Monitoring plant-pollinator interactions is crucial for understanding the 
factors influencing these relationships across space and time. Traditional methods 
in pollination ecology are resource-intensive, while time-lapse photography offers 
potential for non-destructive and automated complementary techniques. 
However, accurate identification of pollinators at finer taxonomic levels (i.e., genus 
or species) requires high enough image quality. This study assessed the feasibility 
of using a smartphone setup to capture time-lapse images of arthropods visiting 
flowers and evaluated whether these images offered sufficient resolution for 
arthropod identification by taxonomists. Smartphones were positioned above 
target flowers from various plant species in urban green areas around Leipzig and 
Halle, Germany. We present proportions of arthropod identifications (instances) at 
different taxonomic levels (order, family, genus, species) based on visible features 
in the images as interpreted by taxonomists. We document whether limitations 
stem from the automated setup (e.g., fixed positioning preventing capture of 
distinguishing features despite high image resolution) or from low image quality. 
Recommendations are provided to address these challenges. Our results indicate 
that 89.81% of all Hymenoptera instances were identified to family level, 84.56% of 
pollinator family instances to genus level, and only 25.35% to species level. We were 
less able to identify Dipterans to finer taxonomic levels, with nearly 50% of 
instances not identifiable to family level, and only 26.18% and 15.19% identified to 
genus and species levels. This was due to their small size and the more challenging 
features needed for identification (e.g., in the wing veins). Advancing smartphone 
technology, along with their accessibility, affordability, and user-friendliness, offers 
a promising option for coarse-level pollinator monitoring. 

Keywords—Smartphones, plant-pollinator interactions, time-lapse photography, 
monitoring, arthropod identification, image observation 

INTRODUCTION 

The interactions between plants and their 

animal pollinators provide critical ecosystem 

services, by sustaining the reproduction of the 

majority of our food and wild plant species 

(Ollerton et al. 2011). It is thus critical to monitor 

plant-pollinator interactions and to understand the 

factors that cause these interactions to change 

across space and time. Since many species of 

pollinating insects cannot be identified on sight, 

most studies quantifying plant-pollinator 

interactions involve capturing insects observed 

visiting flowers and later identifying them using 

microscopy (e.g., Motivans Švara et al. 2021; 

Rakosy et al. 2022) or DNA barcoding (Creedy et 

al. 2020). While these methods are accurate and can 

provide museum specimens that are valuable for a 

wide variety of research purposes (Rakosy et al. 

2023), they are time consuming, costly to scale, and 

require expert knowledge in insect taxonomy or 

barcoding. Further, these methods are destructive, 

requiring the killing of many insects in order to 

monitor biodiversity and interactions. With the 

Journal of Pollination Ecology, 

38(1), 2025, pp 1-21 

DOI: 10.26786/1920-

7603(2025)778 

 

Received 14 December 2023, 

accepted 5 December 2024 

*Corresponding author: 

valentin.stefan@idiv.de  

 

Note on Methodology 

https://doi.org/10.26786/1920-7603(2024)778
https://doi.org/10.26786/1920-7603(2024)778
mailto:valentin.stefan@idiv.de


2 Ștefan et al. J Poll Ecol 38(1) 

 

growing availability of video and photographic 

devices and artificial intelligence identification 

approaches, there is an opportunity for this field of 

science to move towards automated, non-

destructive methods in pollinator research 

(Montero‐Castaño et al. 2022). 

Recent review studies show that there is great 

potential to automate the detection and 

identification of plant-pollinator interactions 

based on images and sound (Martineau et al. 2017; 

Barlow & O’Neill 2020; Pegoraro et al. 2020; Høye 

et al. 2021; Amarathunga et al. 2021; Kohlberg et al. 

2024). We are working towards a future where 

pollinators visiting flowers can be rapidly 

monitored using an automated camera system 

(e.g., time lapse photography). In this system, 

artificial intelligence will be able to detect the 

presence of an insect in a photo (Stark et al. 2023; 

Sittinger et al. 2024) and classify it to the lowest 

possible taxonomic level (e.g., Spiesman et al. 

2021). 

The choice of camera system for automated 

monitoring is important, as both sharp images and 

high enough resolution are necessary to capture 

the distinguishing features needed for finer 

taxonomic identifications. Numerous camera 

systems are under investigation for monitoring 

pollinators. For example, camera systems include 

off-the-shelf digital products such as Apple iPod 

nanos (Lortie et al. 2012), fixed-lens cameras (Steen 

2017), camera traps (Mcelveen & Meyer 2020; 

Naqvi et al. 2022), time-lapse cameras (Edwards et 

al. 2015; Smith et al. 2021; Alison et al. 2022; Nagai 

et al. 2022), and surveillance cameras (Steen & 

Thorsdatter Orvedal Aase 2011; Mertens et al. 

2021), as well as recent programmable 

microcomputers such as NVIDIA Jetson Nano 

(Bjerge et al. 2022), Raspberry Pi (Ratnayake et al. 

2021; Droissart et al. 2021; Bjerge, Alison, et al. 

2023; Ratnayake, Amarathunga, et al. 2023), a 

Luxonis microcomputer-camera capable of edge 

AI coupled with a Raspberry Pi (Sittinger et al. 

2024) and near-infrared sensors, like those offered 

by FaunaPhotonics (Rydhmer et al. 2022). 

Among the multitude of camera systems, the 

use of smartphones and time-lapse photography to 

photograph diurnal arthropods visiting flowers is 

a simple and appealing option for several reasons, 

including affordability, ease of use, no supply 

shortages due to their high demand, the ability to 

simultaneously monitor other variables (e.g., 

sound, location, ambient light, atmospheric 

pressure, and temperature), and the ubiquity of 

smartphones that offers a broad scope and scale of 

monitoring (Lahoz-Monfort & Magrath 2021). 

Smartphones are already used in several citizen 

science initiatives aimed at monitoring pollinators, 

such as iNaturalist, Spipoll, ObsIdentify. For 

example, in Spipoll, citizen scientists are asked to 

watch and photograph all pollinators that visit a 

flower. iNaturalist allows citizens to identify 

organisms they see, including pollinators, by 

uploading images and using crowdsourced 

species identification. While these initiatives allow 

any camera system to be used, smartphones are a 

popular choice and the images captured by 

smartphones can often be identified to fine 

taxonomic grains (genus and species levels).  

In citizen science initiatives that use 

smartphones, the citizen moves the camera to 

follow and focus on the insect and uploads only 

their best image. It is still an open question 

whether smartphones that are set for automated 

monitoring using time lapse, video, or motion-

activated photography can capture images of 

pollinators that can be identified to finer 

taxonomic levels, such as genus or species. In a test 

using smartphones for motion-activated pollinator 

monitoring, Donovan et al. (2021) found their 

setup inefficient. Specifically, many of their images 

did not contain pollinators and appeared to have 

been triggered by wind and plant movement 

rather than by the insects themselves. Ratnayake et 

al. (2021) employed a Samsung Galaxy S8 

smartphone camera placed on a tripod, positioned 

at a height of 0.6 m above a patch of Scaevola 

flowers, to capture videos of honeybee visitors. 

They reported high success with this method, 

however their focus was exclusively on a 

quantitative assessment of honeybee visits to a 

single plant species. 

With this paper, we aim to assess the use of 

smartphones mounted above flowers to 

automatically capture images of arthropods 

visiting these flowers through time-lapse 

photography, requiring human intervention only 

at setup. We first give a detailed description of the 

observational setup and our approach to image 

selection and taxonomic identification. Second, we 

quantify the level of taxonomic identification that 

https://www.inaturalist.org/
https://www.spipoll.org/
https://observation.org/
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is achievable from the images collected by having 

expert entomologists identify the arthropods to the 

lowest possible level, based on visible features and 

available taxonomic keys. We report the 

proportion of instances identified at different 

taxonomic levels (order, family, genus, and 

species), where each instance represents an 

arthropod marked with a bounding box in an 

image. Next, we discuss if the limited 

identification at finer taxonomic levels was due to 

the setup approach in general (i.e., observing 

distinguishing features is not possible even from a 

high-quality image) or due to low image quality 

(i.e. low resolution, out of focus). Then, we 

communicate some of the lessons learned and 

troubleshooting that were involved with using 

smartphones for pollination research. Finally, we 

discuss the next technological steps that would be 

necessary to allow for efficient automated 

pollinator monitoring, including developing AI 

that can detect and identify the arthropods in the 

images. 

MATERIALS AND METHODS 

Our study was conducted in the urban green 

areas at 30 sites in and around Leipzig and Halle, 

Germany (Appendix Tab. I). These field sites were 

chosen because they were active areas of research 

on pollinator biodiversity monitoring and plant-

pollinator interaction studies. Within these field 

sites, individual plants in flower were selected for 

collecting images of their visiting pollinators (we 

use the term pollinator to define an arthropod 

which touched the reproductive parts of the 

flowers). The plants were chosen somewhat 

haphazardly at each site, based on the plant species 

that seemed to be getting a reasonable frequency 

of visits, as our goal was to maximise the number 

of images of visiting arthropods. We targeted 

flowers that were open and plants that hold their 

flowers straight up and avoided plant species that 

had drooping flowers, as these would be more 

difficult to photograph. In total, we monitored 33 

different plant species (Appendix Tab. II). The 

fieldwork required a total of 280 hours to record 

time-lapse images of arthropods visiting flowers at 

the study sites. Images were collected from July 

through September 2021.  

SMARTPHONE SETUP 

To monitor visiting pollinators, we affixed a 

smartphone above the flower or inflorescence 

(setup example in Fig. 1). Our objective was to 

capture time-lapse images at one-second intervals, 

targeting a one-hour session duration for each 

observed flower. After each session, the 

smartphone was moved to another flower. Because 

the number and identity of plant-pollinator 

interactions vary during the day (Nagano 2023), 

images were captured from 8:00 AM to 5:00 PM 

(Appendix Fig. I). Observations were only 

conducted on sunny or mostly sunny days. 

The smartphones were securely mounted on 

tripods and powered through USB cables 

connected to power banks for a continuous flow of 

energy. We utilised power banks with an output of 

5V and a range of 1-2.1mAh, resulting in a total 

cost of 130-200 EUR per setup unit (Tab. 1). We 

acquired six affordable Blackview A60 

smartphones and received two donated, used 

smartphones, HomTom HT50 and HUAWEI 

 

 

Figure 1. Example of the smartphone setup used for time-
lapse photography, mounted on top of a target flower. a) 
smartphone, b) tripod, c) target flower, d) support stick 
used to stabilise the flower against wind movements, e) 
power bank.
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Table 1. Example of affordable smartphone gear. 

ID Product 
No. 

units 

URL  

(last checked 2024-06-12) 

Unit price 

(€, 2021) 

Max. image resolution 
(width x height, pixels) 

1 Blackview A60 smartphone 6 https://www.devicespecifications.co
m/en/model/d214501f  

85 4160 x 3120 

2 HomTom HT50 smartphone 1 https://www.devicespecifications.co
m/en/model/56af442f  

Donated, used 3264 x 2448 

3 HUAWEI WAS-LX1A 
smartphone 

1 https://www.devicespecifications.co
m/en/model/8469421f  

Donated, used 3968 x 2976 

4* Djroll Qi solar power bank 
36000 mAh 

2 https://www.amazon.com/dp/B08ZK
K9GG3  

40  

5* Sweye solar power bank 
26800 mAh 

3 https://www.amazon.de/dp/B08CV3
JV7C  

22  

6* Hermitshell Poweradd 
EnergyCell 10000 mAh 

3 https://www.amazon.de/dp/B07T8N
2B29   

11  

7 Everesta aluminium tripod  8 https://www.amazon.de/dp/B0725G
DDQX   

23  

8 SanDisk micro SD card, 32 Gb 8 https://www.amazon.de/dp/B06XW
MQ81P   

9  

*) All three models of power banks were sufficient for supplying energy to the smartphones during the day. They were 
recharged along with the smartphones at the end of each field day. 

WAS-LX1A and also included a small number of 

images in our study taken by a Canon EOS 200D 

DSLR camera with a 50mm lens (Tab. 3). 

The smartphone gear setup was lightweight, 

weighing between 0.80 and 1.14 kg, with the power 

bank being the heaviest component, varying 

between 0.18 and 0.52 kg. We used the free Open 

Camera app (Harman 2023) for capturing the time-

lapse images. The detailed protocol implemented 

for our field work can be found in Appendix VII. 

To ensure consistent and high-quality 

recordings, we set a fixed focus at the start of each 

session on a target flower or portion of the flower 

or inflorescence which defined the region of 

interest (ROI). This was done by disabling the 

auto-focus feature in the Open Camera app, as it 

could result in images with a focus on the 

background rather than the target flower due to 

wind movements and/or arthropod activity (e.g., 

Bjerge, Frigaard, et al. 2023). To minimise wind 

movements, we secured the target flowers to a 

wooden stick using yarn. The smartphones were 

positioned at a distance of 15-20 cm from the centre 

of the target flower to frame as much of a single 

flower as possible, which is important given the 

small size of most pollinators. Due to the absence 

of a fixed duration recording feature in the Open 

Camera app, we employed a stopwatch for timing. 

After each one-hour interval, an alarm would 

sound, prompting us to manually stop the 

recording in the app. The Open Camera app was 

set to capture an image every second, and we 

manually created a unique folder for each 

recording session with the plant's name identified 

in the folder title. We used the Flora Incognita app 

(Mäder et al. 2021) to identify the focal plant 

species and this identification was verified by a 

botanist using the captured time-lapse images. The 

Open Camera app allows the user to set the image 

resolutions, depending on the smartphone model. 

The majority of the images in our dataset were set 

to be captured at a custom resolution of 1600 x 1200 

pixels (below their maximal resolution – Tab. 1). 

We did not implement an experimental design to 

compare the smartphone models in terms of image 

resolution and quality. In line with best practices 

commonly acknowledged in camera trap research 

(e.g., Bjerge, Frigaard, et al. 2023; Sittinger et al. 

2024), we configured the exposure to automatic 

mode. This approach, recommended to counteract 

issues of over- or underexposure, enables the 

camera to dynamically adjust to the changing 

lighting conditions, thus maintaining consistent 

image quality. 

https://www.devicespecifications.com/en/model/d214501f
https://www.devicespecifications.com/en/model/d214501f
https://www.devicespecifications.com/en/model/56af442f
https://www.devicespecifications.com/en/model/56af442f
https://www.devicespecifications.com/en/model/8469421f
https://www.devicespecifications.com/en/model/8469421f
https://www.amazon.com/dp/B08ZKK9GG3
https://www.amazon.com/dp/B08ZKK9GG3
https://www.amazon.de/dp/B08CV3JV7C
https://www.amazon.de/dp/B08CV3JV7C
https://www.amazon.de/dp/B07T8N2B29
https://www.amazon.de/dp/B07T8N2B29
https://www.amazon.de/dp/B0725GDDQX
https://www.amazon.de/dp/B0725GDDQX
https://www.amazon.de/dp/B06XWMQ81P
https://www.amazon.de/dp/B06XWMQ81P
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ARTHROPOD ANNOTATION AND IDENTIFICATION 

For each unique folder corresponding to a time-

lapse recording session for a target flower, we 

visually inspected each image to determine if it 

contained an arthropod. If an arthropod was 

present, we manually placed a tight bounding box 

around it and identified the arthropod to 

taxonomic order. For clarity, throughout this 

manuscript, we will use the term “instance” 

specifically to refer to any bounding box 

containing an arthropod. The data annotation 

phase required a cumulative total of 1,000 hours 

from four annotators. The free and open-source 

VGG Image Annotator (VIA) software (Dutta & 

Zisserman 2019) was utilised to view the images, 

draw bounding boxes, and enter the taxonomic 

order information. We annotated all arthropods 

present in each image, but did not assign a unique 

identifier to each individual. This software 

requires no installation, works across all common 

operating systems (Windows, Linux, or MacOS), 

and consists of a single HTML file that runs on 

most common web browsers (e.g., Google 

Chrome, Mozilla Firefox, etc.). To record 

annotation metadata for each bounding box, we 

created a custom JSON file template for VIA with 

a custom attribute table. A step-by-step annotation 

example and tutorial is provided on the GitHub 

repository1 associated with this article. 

Next, we converted the JSON data files into 

spreadsheet files using R and Python scripts 

available on our GitHub repository2. These 

spreadsheets contained the paths to images with 

arthropods, along with the pixel coordinates of the 

bounding boxes placed around the arthropods. We 

then merged the individual spreadsheets for each 

target flower into a single, comprehensive 

annotation spreadsheet. The decision to use 

spreadsheets was strategic due to their user-

friendliness and simplicity. Additionally, we 

opted for spreadsheets because the VIA annotation 

tool currently lacks certain functionalities such as 

efficient filtering by multiple fields and the ability 

to easily drag and drop or copy-paste taxonomic 

information for consecutive frames (rows) of the 

same individual. To speed up the visualisation of 

each arthropod with its corresponding bounding 

 
1,2 https://github.com/valentinitnelav/pollinator-image-
annotation  

box directly from the spreadsheets, we created the 

free and open source annotation tool ‘boxcel’ 

(Ștefan 2022). 

Co-authors with entomological expertise 

visually inspected the images with arthropods and 

identified pollinators in the Hymenoptera and 

Diptera orders to the lowest taxonomic level 

possible. The identification of other flower visitors 

was limited to the order level only. If an arthropod 

was present across multiple consecutive frames, 

the identification was ultimately determined by 

the combined frames from which the expert could 

extract the maximum amount of information. 

These three co-authors cumulatively invested 720 

hours in this effort. Their tasks also included 

familiarising themselves with the unique 

challenges of the image dataset, defining custom 

taxonomic categories, and developing tailored lists 

of visible features to aid identification. They also 

occasionally verified the placement of bounding 

boxes to ensure they were tightly fitted around the 

arthropods and checked the accuracy of previously 

recorded order labels. Time estimates are 

approximate and based on contract durations 

associated with this study. 

We did not physically capture the insects for 

identity verification using methods such as 

microscopy or DNA analysis. Instead, we relied on 

keys often designed for microscopy, along with 

online visual guides, and thus acknowledge the 

potential for subjectivity in the identification 

process. The visible distinguishing features and 

the expert assessments are documented in 

Appendix Tables III and IV for Hymenoptera and 

Diptera, respectively, along with visual examples 

and references to taxonomic keys, online visual 

guides and other relevant sources used. In these 

tables, we provide details regarding identifications 

classified as either 'robust' or 'subjective'. 

Generally, 'robust' identifications were based on 

clear distinguishing characteristics consistently 

visible across the images and supported by 

detailed descriptions from various cited sources. In 

contrast, 'subjective' identifications relied on 

expert judgement due to less distinct features, 

drawing on the entomological experience of co-

authors and their prior microscope-based 

https://github.com/valentinitnelav/pollinator-image-annotation
https://github.com/valentinitnelav/pollinator-image-annotation
https://github.com/valentinitnelav/pollinator-image-annotation
https://github.com/valentinitnelav/pollinator-image-annotation
https://github.com/valentinitnelav/pollinator-image-annotation
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identification work. For example, while Apis 

mellifera is a common species observed in our study 

with distinct features, its identification is classified 

as 'subjective' because we cannot observe all the 

features required by a taxonomic key.  

Bombus species are common pollinators but are 

difficult to identify visually due to high 

morphological variation within species (e.g., 

across queens and workers) and sometimes similar 

colour patterns across species (Spiesman et al. 

2021). For example, Carolan et al. (2012) showed 

that colour patterns and other morphological traits 

often fail to reliably distinguish cryptic species. 

Therefore, Bombus species expected in our study 

area and neighbouring regions (Germany and 

adjacent countries) were classified into 

morphospecies groups (Appendix Tab. III). 

Similarly, for Diptera, the visual similarity of 

certain families in our image dataset necessitated 

grouping them into clusters. Specifically, the 

families Calliphoridae and Muscidae were 

combined into a single cluster, and Sarcophagidae 

and Tachinidae were grouped into another. 

Additionally, with over 460 Syrphidae species 

potentially occurring in Germany (Ssymank et al. 

2011), many genera exhibit superficial similarities 

that often rely on specific distinguishing features, 

which are unlikely to be discernible in our image 

dataset. To address this, Syrphidae species were 

grouped into broader clusters based on observable 

traits, such as mimicry, colour patterns, or shared 

morphologies (Appendix Tab. IV). 

RESULTS AND DISCUSSION 

We sampled 33 different plant species (see 

Appendix Tab. II) and annotated 213 unique 

folders, each corresponding to approximately one 

hour of time-lapse recordings, which resulted in a 

dataset of 460,056 images. Because we utilised a 

stopwatch for timing our recordings due to the 

limitations of the Open Camera app, some 

variation in recording durations occurred, with an 

average duration of 3,553 ± 372 seconds (mean ± 

S.D.) per target flower. 

Our dataset of 460,056 images is sparse, with 

only 33,502 images (7.28%) containing at least one 

arthropod, resulting in a total of 35,194 instances 

(bounding boxes) (Tab. 2, Appendix Tab. II). The 

higher bounding box number was due to the 

presence of more than one arthropod in some  

Table 2 – Summary of annotated instances (bounding 
boxes, “No. box”) for each taxonomic order in the dataset. 
The 11 bounding boxes without taxonomic order labels 
(“No Id.”) correspond to 11 consecutive images of a very 
small flower visitor captured in blurred images. 

Order No. box Percent % % cumul. sum 

Hymenoptera 20,987 59.63 59.63 

Diptera 5,963 16.94 76.58 

Coleoptera 3,254 9.25 85.82 

Thysanoptera 2,965 8.42 94.25 

Araneae 1,158 3.29 97.54 

Hemiptera 812 2.31 99.84 

Lepidoptera 44 0.13 99.97 

No Id. 11 0.03 100 

Total 35,194 100  

 

images (e.g., Fig. 7C). The vast majority of images, 

95.22%, contained only one arthropod, while 4.49% 

contained two arthropods, 0.28% contained three 

arthropods, and we only identified a single image 

containing four arthropods. The presence of 

multiple arthropods in the images did not 

significantly challenge the co-authors with 

taxonomic expertise during the identification 

process or cause data management issues as each 

arthropod was encapsulated within a bounding 

box assigned a box unique identifier. Most images 

containing arthropods (94.16%) were captured 

using the six Blackview A60 affordable 

smartphone models, with the majority (93.69%) 

taken at a resolution of 1600 x 1200 pixels, or 1.92 

megapixels (Tab. 3). 

With the exception of one very small flower 

visitor for which only blurred images were 

captured, we identified all arthropods to order 

level. In total we observed seven different orders 

of arthropods visiting our flowers (Tab. 2 & Fig. 2). 

Around 60% of the annotated bounding boxes 

contained a Hymenopteran, while 17% were 

Dipterans, with the two groups comprising more 

than three quarters of the annotated boxes. We 

rarely observed Lepidopterans (0.03%). 

IDENTIFYING HYMENOPTERA TO LOWER TAXONOMIC LEVELS 

A total of 20,987 bounding boxes contained an 

insect instance from the order Hymenoptera (Tab. 

2, Fig. 3A & Appendix Tab. V), with identification



January 2025 Smartphones and time-lapse photography for pollinator image collection 7 

 

Table 3 – Summary of annotated images per camera model. 

Model Image resolution (width x 
height, pixels) 

No. images per model 
and resolution 

% No. images 
per model 

% 

Blackview A60 1600 x 1200 29,778 88.88 31,544 94.16 

1200 x 1600* 1,613 4.81 

2048 x 1536 153 0.46 

HomTom HT50 1600 x 1200 711 2.12 1,052 3.14 

1152 x 864 203 0.61 

2048 x 1536 138 0.41 

Canon EOS 200D** 2400 x 1600 654 1.95 654 1.95 

HUAWEI WAS-LX1A 1280 x 720 252 0.75 252 0.75 

*) Depending on the smartphone’s orientation, the resolution may switch the width and height pixel values. 

**) DSLR camera for trial purposes. 

 

Figure 2. Examples of images with flower visitors from the seven observed orders with zoom on the respective bounding box 
for (A) Hymenoptera - Bombus lapidarius on flower of Centaurea jacea, (B) Diptera - Episyrphus balteatus on Bunias orientalis, (C) 
Coleoptera on Achillea millefolium, (D) Thysanoptera on Trifolium pratense, (E) Araneae on Achillea millefolium, (F) Hemiptera 
on Centaurea jacea, (G) Lepidoptera near Picris hieracioides, (H) No-Id, the order could not be identified. 
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details and corresponding cropped image 

examples provided in Appendix Tab. III. Of these, 

18,849 (89.81%) could be identified to one of ten 

families (Appendix Tab. V). There are a variety of 

reasons why some instances could not be 

identified to the family level (Fig. 4). First, insects 

were outside the region of interest (ROI, Fig. 4A); 

in our case the ROI is typically a focal flower, an 

inflorescence, or a part of an inflorescence. Insects 

that were in the background rather than the ROI of 

the images were typically out of focus, obscured by 

surrounding vegetation, or appeared too small for 

further identification. For the purposes of many 

projects in pollination ecology, visitors on the focal 

flowers or inflorescence are the target of 

observations, and the ability to identify 

background insects that are outside this ROI 

would not be necessary. Second, identifying 

features of some insects that were inside the ROI 

were physically obscured from view in every 

image in which they occurred (Fig. 4B). These 

insects were in clear focus, but were either partly 

cut out of the image due to movement of the flower 

after the camera was set up, obscured by the 

surrounding vegetation, or positioned at an angle 

such that only part of the insect was ever visible. 

Hereafter, these cases are simply referred to as 

“obscured”. Third, some insects within the ROI 

were too blurry to allow the discernment of the 

identifying features in every image in which they 

Figure 3. Bar plot illustrating 
the number and percent of 
instances (bounding boxes) at 
different taxonomic levels for 
the flower visitors in the order 
Hymenoptera (see also 
Appendix Tab. V). The primary 
y-axis (left) shows the count of 
instances, while the secondary 
y-axis (right) displays the 
corresponding percentage for 
each taxonomic level, relative 
to the total number of 
instances in the 'Order' level 
(panel A), and to the total 
number of instances at the 
pollinator family level (panel B, 
excluding the families 
Cynipidae, Formicidae, and 
Vespidae). This visualisation 
highlights the distribution and 
completeness of taxonomic 
information we could achieve 
within the Hymenoptera 
dataset, noting that for the 
families Cynipidae, Formicidae, 
and Vespidae, no further 
identification to lower 
taxonomic levels (genus, 
species) was attempted due to 
their unlikely role as 
pollinators. Apis mellifera 
comprised 15.76% of the total 
instances labelled as 
Hymenoptera. 



January 2025 Smartphones and time-lapse photography for pollinator image collection 9 

 

 

Figure 4. Examples of Hymenoptera insects that could not be identified to the family taxonomic level: (A) insect outside the 
region of interest (ROI), (B) insect within the ROI but all identifying features are physically obscured, (C) insect within the ROI 
but too blurry to identify, (D) tiny wasp. 

occurred (Fig. 4C). This occurred when the insect 

was too small to be seen in high resolution from 

the set depth of field, when the depth of field was 

too narrow and only focused on the surface of the 

flower but not the visiting insects, or when the 

insect was moving when the photo was taken. 

Hereafter, these cases are referred to as “too 

blurry.” Fourth, many instances were of a few 

individuals of tiny wasps that were only a handful 

of pixels in length (Fig. 4D). Because these tiny 

wasps remained on the same flower for several 

minutes at a time, we had hundreds of images of 

each individual. These tiny wasps were unlikely to 

be contributing to the pollination of the focal 

flowers and likely play a larger role in the 

ecosystem as parasitoids (Quicke 1997). The 

challenges of identifying very small insects are 

discussed further in the sections “Identifying 

Diptera to lower taxonomic levels” and “Lessons 

learned and ideas for future development”. Of the 

2,138 (10.19%) bounding boxes with insect 

instances that could be identified to order 

Hymenoptera but not further identified to family, 

397 (18.57%) were outside the region of interest, 11 

(0.51%) were obscured, 76 (3.55%) were too blurry, 

and 1,654 (77.36%) were tiny wasps. 

In the following paragraphs, we present the 

identification results for instances of insects from 

the Hymenoptera families in alphabetical order, 

consistent with the organisation of Appendix Tab. 

V. 

Of the 608 (2.90%) bounding boxes with insect 

instances identified to the family Andrenidae, 253 

could be further identified to the genus Andrena 

(Fig. 5). Over 100 species of Andrena are present in 

Germany and determination to the species level is 

often challenging even using microscopic traits, 

rendering identification from smartphone images 

mostly impossible. Of the Andrenidae instances 

that could not be identified to genus, one was 

 

Figure 5. Examples of individuals from the Andrena genus: (A) showcasing distinctive facial foveae, (B) emphasising the presence 
of two submarginal cells, visible in the right wing's venation.
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outside the ROI, 28 were obscured, and 326 were 

too blurry. 

All 8,485 (40.43%) instances identified as 

Apidae were further classified to genus: Bombus 

(5,178) and Apis (3,307). For the genus Apis, all 

instances were of the Western honeybee, Apis 

mellifera (e.g., Fig. 6A). For the genus Bombus, 5,063 

instances could be identified to five morphospecies 

(Fig. 6B-F), 115 instances were obscured (Fig. 6G), 

and seven could be identified as Bombus lapidaries 

(Fig. 2A). 

Of the 404 (1.93%) instances identified to the 

family Colletidae, all could be identified further to 

two genera that occur in Germany: Colletes (two 

instances) and Hylaeus (402 instances). There are 

nearly 40 species of Hylaeus that occur in Germany 

and differentiation between species depends on 

minute differences in the maculations that are not 

visible in the field images. 

A total of 390 (1.86%) instances were identified 

to the family Cynipidae (gall wasps). Lower-level 

identification of these instances was not attempted, 

as we focus on pollinators rather than parasitoids 

(Whitfield 1998). 

The family Formicidae (ants) comprised 2,426 

(11.56%) of the identified instances. Lower-level 

identification was not attempted due to our focus 

on pollinating insect groups. Ants are rarely 

 

Figure 6. Examples of individuals from the Apidae family: (A) with all characteristic features of Apis mellifera - golden-brown 
coloration, corbiculae (“pollen baskets”), striped abdomen, and banana-shaped marginal cell, (B) example of Bombus “black” 
morphospecies group, (C) Bombus “red-tailed” morphospecies group, (D) Bombus “red and yellow” morphospecies group, (E) 
Bombus “striped” morphospecies group, (F) Bombus “white-tailed” morphospecies group, (G) Bombus individual which could 
not be assigned to a morphospecies group. 
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Figure 7. Examples of individuals from the Halictidae family: (A) with strongly curved basal wing vein characteristic of the family 
Halictidae, (B) with abdominal furrow, characteristic of females in the genera Halictus and Lasioglossum, (C) with apical banding 
of the tergites in Halictus male (lower individual) and female (upper individual), (D) with basal banding of the tergites in 
Lasioglossum. 

pollinators in temperate grassland ecosystems, 

and more often disrupt pollination by damaging 

flowers or changing the foraging behaviour of 

pollinators (Wills & Landis 2018). 

Altogether, 6,153 (29.32%) instances were 

identified to the family Halictidae (Fig. 7). A total 

of 2,959 (14.10%) instances were labelled as 

belonging to the genus Halictus and 1,102 (5.25%) 

to the genus Lasioglossum. Further identification 

within these genera is complicated by the large 

number of species, but a few species were 

somewhat distinctive (see also Appendix Tab. III & 

V): Halictus scabiosae (287 instances), Halictus 

subauratus (422 instances) and males of 

Lasioglossum calceatum (28 instances). A total of 

2,092 (9.97%) instances labelled as Halictidae could 

not be identified to genus. Of these, 678 were 

outside the ROI, 142 were obscured, and 1,272 

were too blurry. 

Of the 195 (0.93%) instances identified to the 

family Megachilidae, 13 were identified as 

Anthidium manicatum (Fig. 8A), 150 were identified 

as Megachile and four were identified as Osmia (Fig. 

8B,C, Appendix Tab. III). The remaining 28 

instances could not be identified to the genus level: 

14 were outside the ROI and 14 were too blurry for 

finer identification. 

A total count of 181 (0.86%) instances were 

identified to the family Melittidae. There are no  

 

 

Figure 8. Examples of individuals from the Megachilidae 
family: (A) Anthidium manicatum, (B) showing abdominal 
position of Osmia genus, (C) showing abdominal position 
of Megachile genus. 
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Figure 9. Examples of individuals from the Melittidae 
family: (A) of Dasypoda genus and its characteristically 
long leg hairs, (B) of Macropis genus and its characteristic 
tibial hairs. 

unique traits that unite the family Melittidae, and 

thus all bounding boxes were assigned to one of 

two genera: Dasypoda (three instances, Fig. 9A) and 

Macropis (178 instances, Fig. 9B). Identification to 

the species level in both genera requires close 

examination of the hairs on the legs and abdomen, 

which is not possible from our images. 

Two larger wasps were also observed. One 

individual (five instances) belonged to the family 

Pompilidae and was a member of the genus 

Episyron. The other individual (two instances) 

belonged to the family Vespidae. We did not 

attempt to further identify this individual. 

For the purposes of pollination ecology, it is 

desirable to identify insects to at least genus level, 

as this provides structural information on the 

plant-pollinator network that is similar to the 

species level (Rodrigues & Boscolo 2020). The 

ability of sampling with smartphones to capture 

images that enabled this level of identification was 

high. Of the 18,849 (89.81%) instances with flower 

visitors identified to families within the order 

Hymenoptera, we did not attempt to identify 2,818 

(14.95%) further because they are unlikely to be 

pollinators (families Cynipidae, Formicidae, 

Vespidae). Of those 16,031 (76.39%) instances from 

pollinating families for which further 

identification was attempted, we identified 13,556 

(84.56 %) to genus and 4,064 (25.35%) to species 

(Fig. 3B). Of the 2,475 instances from pollinating 

families that could not be identified to genus, 693 

(28.00%) were outside the ROI, and thus would not 

have been the target for observations in pollination 

ecology (i.e., they are not visiting the focal flower 

we are observing). 171 (6.91%) were obscured, and 

thus even more expensive camera systems would 

not have enabled a closer identification. Finally, 

1,611 (65.09%) were blurry. The blurry cases reflect 

the possible limitations of sampling with 

affordable smartphones, as more expensive 

camera systems might have better been able to 

capture sharper photos of small or fast-moving 

insects visiting the ROI. 

IDENTIFYING DIPTERA TO LOWER TAXONOMIC LEVELS 

Distinguishing between Diptera families from 

images requires a clear view of characters of the 

wing veins in combination with other distinctive 

features such as body shape, patterning and/or 

colour. However, wing venation was not typically 

visible in our images. Therefore, identification to 

the family level posed significant challenges, and 

identification to finer levels (genus and species) 

proved even more demanding or impossible. 

A total of 5,963 bounding boxes contained an 

insect instance from the order Diptera (Tab. 2, Fig. 

10 & Appendix Tab. VI), with identification details 

and corresponding cropped image examples 

provided in Appendix Tab. IV. Of these, 3,066 

(51.42%) could be identified to one of the six 

families or family-clusters: Anthomyiidae, 

Calliphoridae/Muscidae, Chyromyidae, 

Sarcophagidae/Tachinidae, Syrphidae and 

Tachinidae (Appendix Tab. VI). Further 

identification to genus level was possible for only 

1,561 (26.18%) instances, and to species level for 

just 906 (15.19%). 

Of the insect instances found in the bounding 

boxes that were labelled as Diptera, nearly half 

(2,761 instances, or 46.30%) were subsequently 

identified as Syrphidae. This was the only family 

for which species-level identification was possible, 

with the three identified species illustrated in Fig. 

11 and their instance counts presented in 

Appendix Tab. VI. A total of 1,210 (20.29%) 

instances were assigned to Syrphid morphological 

groups. Only seven instances marked as Syrphidae 

could not be identified to the morphological group 

level - two were outside the ROI, three displayed 

incomplete views of the insect (obscured), and two 

featured insects in flight (too blurry). 
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Figure 11. Examples of Syrphidae identified to species 
level: (A) Episyrphus balteatus, (B) Helophilus trivittatus , 
(C) Myathropa florea. 

The remaining 2,897 (48.58%) instances could 

not be identified to the family/family-cluster level 

(e.g., Fig. 12). Of these, in most cases the insect was 

too small and zooming in to see identifying 

features resulted in blurry, pixelated images. This 

occurred when we attempted to capture an entire 

inflorescence as a ROI, which resulted in blurry 

images of the small flies that visited flowers within 

that inflorescence (Fig. 12A). Similarly, if the phone 

was positioned too distant from the target flower, 

the images of small flies were blurry (Fig. 12B). 

Moreover, some of these flies were so tiny that 

identifying features could not be seen even when 

the camera was fairly close to and focused on the 

target flower (Fig. 12C). We note that 697 (24.06%) 

of these instances were from one time-lapse 

photoset of one very tiny fly individual (Fig. 12C). 

Finally, 182 instances (6.28%) were outside the 

region of interest (ROI), so were not in the focus of 

the camera (Fig. 12D).  

Using a camera lens with more powerful 

optical zoom is a possible solution to these 

challenges, although it is important to note that 

there was a depth of field issue for such small flies. 

Increasing the optical zoom can further decrease 

the depth of field, making it even more challenging 

to maintain focus on small, moving insects across 

the complex three-dimensional structure of the 

target flowers. Although some identifying features 

may have been visible if the fly was at the correct 

focal depth, achieving this focus is difficult given 

the size of the flies. 

LESSONS LEARNED AND IDEAS FOR FUTURE DEVELOPMENT  

Overall, we found that smartphones that are set 

for automated monitoring using time lapse 

photography can capture images of pollinators 

Figure 10. Bar plot illustrating 
the number and percent of 
instances (bounding boxes) at 
different taxonomic levels for 
the flower visitors in the order 
Diptera (see also Appendix Tab. 
VI). The primary y-axis (left) 
shows the count of instances, 
while the secondary y-axis 
(right) displays the 
corresponding percentage for 
each taxonomic level relative to 
the total number of instances in 
the 'Order' level. This 
visualisation highlights the 
distribution and completeness 
of taxonomic information within 
the Diptera dataset. Myathropa 
florea comprises 11.25% of the 
total instances labelled as 
Diptera. 
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Figure 12. Examples of Diptera insects that could not be identified to the family or family-cluster taxonomic level: (A) the insect 
appears too small when attempting to capture the entire large inflorescence, (B) if the phone was too far from the flower, the 
insect appeared small and the identifying features are not visible, (C) Even if the phone is close to the flower and the insect is 
within the ROI, its features may not be visible due to its tiny size, (D) The insect is out of focus and outside the ROI. 

 

that can be identified at the order level, with 

identification becoming more challenging at finer 

taxonomic levels. Our ability to identify 

Hymenoptera from images was significantly better 

than in the case of most Diptera. The most common 

arthropod flower visitors were in the order 

Hymenoptera (59.63% of total instances, Tab. 2). Of 

the bounding boxes containing bee instances, 

84.56% could be identified to genus level when 

excluding unlikely pollinator families (Cynipidae, 

Formicidae, and Vespidae), for which further 

identification was not attempted (Fig. 3B). Only 

25.35% of Hymenoptera instances from pollinator 

families could be identified to the species level, the 

majority of which were Apis mellifera (Fig. 3). 

Identifying Dipterans proved to be more 

challenging. Due to factors such as their smaller 

size and intricate identification features, 

particularly in their wing veins, only 26.18% of fly 

instances could be classified to the genus level, and 

just 15.19% to the species level, the majority of 

which were Myathropa florea (Fig. 10). The 

extensive fieldwork and data annotation involved 

substantial time investments. Therefore, at this 

point, collecting data on plant-pollinator 

interactions using time-lapse photography and 

employing taxonomists to identify the arthropods 

in the images is not a time-saving approach. 

However, we see this research as an important first 

step towards greater automation. The next steps 

involve developing an arthropod detector and 

classifier to enhance automation and efficiency. To 

achieve this, a comprehensive, annotated dataset is 

essential, which we have now created with this 

study. Currently, we are not aware of any general-

purpose arthropod detector and classifier suitable 

for automatically annotating our complex image 

dataset. 

The meticulous process of placing bounding 

boxes around arthropod instances in our images 

was time-consuming but strategic. This process 

aided our taxonomists in quickly identifying the 

arthropods to lower taxonomic levels than just the 

order, saving time otherwise spent searching for 

them. While a simpler key-point approach (i.e., 

placing a simple dot in the centre of the arthropod) 

could have been faster, bounding boxes will 

facilitate the future development of both an 

arthropod detector (e.g., Bjerge, Alison, et al. 2023; 

Stark et al. 2023; Sittinger et al. 2024), and an 

arthropod classifier (e.g., Spiesman et al. 2021; 

Bhuiyan et al. 2022; Ratnayake, Yasin, et al. 2023; 

Bjerge, Geissmann, et al. 2023; Sittinger et al. 2024) 

using the cropped images within the bounding 

boxes. While these existing classifiers are highly 

effective within their specific scope, often limited 

to a genus or a particular species, our project 

captures a broader diversity of taxa. Classifiers are 

also deployed online as prototypes or 
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demonstrations (e.g., BeeMachine2, iNaturalist 

Computer Vision Demo3) or through smartphone 

apps (e.g., Seek by iNaturalist4, ObsIdentify by 

Observation.org5). However, these systems require 

that images be uploaded individually, which is 

impractical for bulk processing of tens of 

thousands of images, as is the case with our 

datasets. Moreover, Beery et al. (2018) have shown 

that such AI models do not usually generalize to 

new image datasets taken with different cameras 

or to new locations. Therefore, our future aim is to 

create a custom arthropod detector, optimised for 

edge device cameras (e.g., Sittinger et al. 2024) and 

a custom classifier. Training models to detect and 

classify arthropods requires a varied image 

dataset, so that the model will perform well under 

different field conditions, including diverse flower 

backgrounds, pollinator taxa, and lighting. 

Understanding the limitations associated with 

classifying our field images from this study has 

practical implications for defining realistic classes 

and setting appropriate expectations for the 

pollinator classifier that will process future 

cropped field images. 

In the course of our fieldwork, we encountered 

several practical challenges that offered valuable 

lessons and highlighted areas for potential 

innovation. The following paragraphs outline 

these key observations.  

One practical consideration is the security of 

our equipment. We acknowledge that camera trap 

theft and vandalism can be significant issues (e.g., 

Meek et al. 2019). However, due to our constant 

presence in the field, we did not experience any 

theft with our setup. Our workflow involves 

deploying smartphones during the day and 

retrieving them in the evening for charging. 

Locating a target flower and setting up a 

smartphone on a tripod takes only a few minutes. 

We didn't specifically test the upper limit, but it is 

feasible for a user to sequentially set up multiple 

smartphones, relocating them as each hour-long 

recording session ends, and continue this process 

throughout the day, allowing for necessary breaks. 

If needed, recording sessions could extend beyond 

an hour, allowing extra time for any other field 

work. Additionally, if theft remains a concern, 

 
2 https://beemachine.ai/  
3 https://www.inaturalist.org/computer_vision_demo  

research suggests that personal messages left on 

devices may reduce theft and vandalism (Clarin et 

al. 2014). 

We did not experience any battery issues in the 

field. We used the phones for several hours each 

day, and we ensured that they were recharged at 

the end of each day. If energy consumption 

becomes an issue, the implementation of solar 

panels for smartphones as a solution has been 

recommended by Donovan et al. (2021). 

Some of our smartphones shut down during 

extreme heat. Similarly, it has been reported that 

there is also a risk that they might not charge under 

high humidity conditions (pers. comm. Robert 

Tropek, Charles University, Prague). To mitigate 

the heat issue, we used white casings that reflect 

light (a simple solution we employed involved 

using a piece of paper). This issue may also arise in 

microcomputers, where heatsinks and coolers are 

essential to maintain the device at operational 

temperatures (e.g., Sittinger et al. 2024). 

Nevertheless, surveillance cameras designed for 

outdoor use appear to be more resilient to such 

conditions, though they are typically more 

expensive than smartphones (pers. comm. Robert 

Tropek, Charles University, Prague). Another 

potential solution could involve using casings, 

similar to those suggested by Donovan et al. (2021). 

These casings would not only protect the devices 

but also incorporate features for reflecting and 

dissipating heat, or even include coolers or heat 

sinks on the surface of the smartphones. 

Additionally, incorporating silica gels within these 

specialised cases offers an extra benefit, as they 

absorb moisture (e.g., Sittinger et al. 2024). 

While it is tempting to increase the image 

resolution to the maximum offered by the 

smartphone model (e.g., Tab. 1), it is not advisable 

because storing a larger amount of data can 

become impractical for data transfer and logistics 

without providing additional taxonomic details, 

particularly if the focus is not sharp enough. Most 

images in our dataset (95.81%) were taken at a 

resolution of 1600 x 1200 pixels (Tab. 3). Generally, 

we envision that resolution ranges from 1000 x 

1000 to 1200 x 1200 pixels (1 to 1.44 megapixels) is 

sufficient for capturing essential arthropod traits, 

4 https://www.inaturalist.org/pages/seek_app  
5 https://observation.org/apps/obsidentify/  

https://beemachine.ai/
https://www.inaturalist.org/computer_vision_demo
https://www.inaturalist.org/pages/seek_app
https://observation.org/apps/obsidentify/
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provided that the arthropod is in focus and the 

smartphones are set no further than the 

recommended distance of 15-20 cm from the target 

flower. 

The Open Camera app provides various 

custom features essential for our fieldwork, such 

as custom resolution, manual focus, custom time 

steps, automatic exposure, file format, image 

compression, and custom image folder naming. 

However, despite its versatility, Open Camera 

lacks the ability to define a rectangular region of 

interest (ROI). We were unable to find any open-

source app for Android OS that combines this 

feature with the other requirements. Therefore, 

there is the necessity for an app feature that can 

capture images based on a predefined rectangular 

ROI that can be set at the beginning of the time-

lapse session. This ROI should be adjusted to 

frame only the target flower or inflorescence, 

possibly including a buffer to account for wind 

movements, and minimise background noise. 

Establishing such a ROI ensures that the camera 

focuses on visiting arthropods, while also 

maximising their occupancy in the image, thereby 

facilitating localisation and identification. 

Employing two distinct lenses per smartphone 

could be advantageous: one for capturing close-up 

images, providing greater detail for smaller 

arthropods (e.g., smaller than 2 cm); and another 

with a field of view or ROI configured to 

accommodate larger insects (e.g., larger than 2 cm). 

This approach can help ensure comprehensive 

image collection across a range of arthropod sizes. 

Furthermore, when selecting a smartphone for 

pollinator monitoring, we suggest to prioritise 

larger optical magnification (i.e., longer focal 

lengths) over high resolution sensors. The use of 

recent smartphone models, which are often 

equipped with 2X optical zoom lenses, is 

suggested. Digital zoom is not advisable due to the 

resulting information loss. An optical zoom allows 

for a reduction in background noise in the frame 

without the need to get too close to the flower, 

which may disturb the visitors. 

There is also the potential in employing 

multiple smartphones per target flower to capture 

images of pollinators from different angles. 

However, such an approach would significantly 

increase the monitoring costs per flower. While we 

have not specifically tested this method, we believe 

the additional expense may not be fully justified by 

the benefits unless different types of lenses are 

being used. Using a single smartphone already 

enables capturing useful time-lapse images of 

pollinators from diverse angles as they move 

across the surface of the target flower. In instances 

where identification is challenging, such as with 

Dipterans, the most informative angle for 

identification has been one that allows observation 

of wing venation, typically from above and with 

minimal sunlight reflection. However, capturing 

images where wing venation is clearly visible 

posed a particular challenge, especially for small 

Dipteran individuals. Therefore, we envisage that 

more significant benefits might be derived from 

employing lenses with optical zoom on a second 

smartphone per target flower. 

Data transfer directly from phones via USB 

cables was slow, prone to interruptions, and 

carries a risk of data loss. Such loss can occur when 

users mistakenly believe the data has already been 

downloaded and proceed to delete it from the 

phone to prepare for the next day. However, this 

issue is not unique to smartphones and can affect 

any camera system, unless streaming to a server is 

utilised where internet coverage is available in the 

field. To expedite data transfer, an alternative 

approach involved removing the micro SD card 

from the smartphone and uploading the data 

directly using a computer's microSD card reader. 

However, this method necessitated frequent 

opening and closing of the phone, increasing the 

risk of breaking the protective casing or causing 

other damage due to the repeated exposure of 

fragile components to sharp tools. More recent 

phone models might allow easier access to the SD 

cards and/or faster download speeds. 

Affordable smartphones are generally slower at 

capturing images compared to devices like 

Raspberry Pi units. Although we configured the 

Open Camera app to capture an image every 

second, in practice, due to overheating or 

processing power limitations, smartphones 

struggled to maintain this rate. Instead, they 

typically captured images at a time step of 1.6 ± 0.4 

seconds (mean ± S.D.), equivalent to an average 

frame rate of approximately 0.63 frames per 

second (fps), with a S.D. range from 0.5 to 0.83 fps. 

In contrast, microcomputers can rapidly capture 

dozens of images per second (e.g., Droissart et al. 



January 2025 Smartphones and time-lapse photography for pollinator image collection 17 

 

2021; Sittinger et al. 2024) without requiring 

significant processing power. Nonetheless, even at 

reduced frame rates of capturing an image every 

1.5 or 2 seconds, we were typically able to capture 

multiple images of each visiting individual, 

enabling taxonomists to identify arthropods by 

observing them from various angles. Furthermore, 

capturing flower-visiting arthropods at these 

intervals could also help estimate their abundance, 

particularly if a standardised protocol is used, such 

as monitoring the same plant species for the same 

duration, positioning smartphones at a consistent 

distance, and assigning a unique identifier to each 

visitor. Bjerge et al. (2022) reported on tracking 

individual insects at a frame rate of 0.33 fps 

(approximately one frame every 3 seconds) using 

a camera based on a Jetson Nano microcomputer, 

suggesting that our frame rate is likely sufficient 

for abundance estimates, which could be validated 

in future studies. Additionally, it is worth noting 

that reducing the time step to capture several 

frames per second would quickly exhaust the 

storage capacity of the micro SD cards on the 

smartphones. For example, with an image 

resolution of 1200 x 1200 pixels and assuming a 

JPG file format that allows 1 MB per frame, 

capturing at 2 frames per second could easily 

generate between 7 and 8 GB in just one hour. 

Due to the time-lapse approach employed in 

capturing images, around 93% of the images in our 

dataset did not contain arthropods. It is customary 

to observe such results with time-lapse camera 

systems. For instance, Ruczyński et al. (2020), 

noted that over 90% of their captured photographs 

were devoid of arthropods. Ideally, a custom 

trigger for pollinators would help reduce the 

volume of stored data. However, several 

challenges exist, such as arthropods not emitting 

heat, often being too small to trigger motion 

sensors, or sensors being activated by wind 

movement. There are ongoing efforts to develop 

AI triggers for pollinators, which involve real-time 

AI pipelines (edge AI) powered by nano-GPUs in 

the field (e.g., Bjerge et al. 2022; Sittinger et al. 

2024). Unfortunately, smartphones do not come 

yet with powerful GPUs like those found in Jetson 

Nano from NVIDIA (2019) or Coral 

microcomputers from Google (Coral 2020), which 

allow for edge AI (e.g., rapid arthropod detection 

on the device). However, fast on-device detection 

carries significant risks, as it may miss small 

species or any taxa that the AI was not trained on 

(Van Horn et al. 2018; van Klink et al. 2022). 

Another solution could involve processing images 

on the smartphone by running an AI model in the 

background (not in real-time) to discard images 

without pollinators. However, this may be too 

energy-intensive for longer recording sessions. 

Alternatively, images could be uploaded to a GPU 

server at the end of the fieldwork day, which offers 

superior detection and classification capabilities, 

though this would require a reliable internet 

connection. 

With nearly all arthropods identified at the 

order level, our study suggests that the 

smartphone setup fixed above target flowers has 

the potential to be a useful tool for monitoring 

pollinators visiting flowers, particularly at coarse 

taxonomic levels. However, significant limitations 

remain for finer taxonomic identification. 

Hymenopterans that are known to pollinate could 

mostly be identified to the family level, with 

progressively reduced success at genus and 

species level. Dipteran identification works best 

when there are sharp photos of the wings, which 

was often not achieved with the smartphone setup. 

As a result, nearly 50% of the instances containing 

Diptera could not be identified to the family level. 

Thus, Dipterans could not be identified as well 

from images taken with the smartphone setup as 

Hymenopterans. Our identification process 

involved some subjectivity. Verification through 

methods such as microscopic examination or DNA 

analysis were not attempted in this study to test 

whether this subjectivity is problematic, and could 

be the topic of future research. In addition, future 

work that creates taxonomic keys based only on 

features that are visible from images is necessary 

to advance this field of study. Likewise, when finer 

taxonomic resolution is not possible from images, 

experts should group larger taxonomic groups into 

morphological clusters. Defining these categories 

provides a valuable framework for developing 

tailored AI classifiers for automated pollinator 

monitoring, considering the limitations of camera 

sensors in taxonomic identification. These 

categories and their identification process can be 

incrementally refined from coarse to finer 

taxonomic resolutions as imaging technology 

advances. 
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