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Abstract—Bumble bees (Bombus spp.) are important pollinators for both wild and 
agriculturally managed plants. We give an overview of what is known about the 
diverse community of internal potentially deleterious bumble bee symbionts, 
including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods 
for their detection, quantification, and control. We also provide information on 
assessment of risk for select bumble bee symbionts and highlight key knowledge 
gaps. This information is crucial for ongoing efforts to establish parasite- conscious 
programs for future commerce in bumble bees for crop pollination, and to mitigate 
the problems with pathogen spillover to wild populations.  
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INTRODUCTION 

Bumble bees (Bombus species) are widespread 

globally, but most prevalent and diverse at high 

altitudes and high latitudes, where they can 

constitute a large proportion of the pollinator 

fauna.  There is reason for concern about their 

status, as declines have been reported around the 

world (Arbetman et al. 2017; Graves et al. 2020; 

Soroye et al. 2020; Van Dooren 2019), and a North 
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American species has been listed as endangered 

and hasn’t been seen since 2006 

(https://biologicaldiversity.org/w/news/press-

releases/elusive-pacific-northwest-bumblebee-

listed-as-endangered-2021-08-23/; accessed 18 

January 2023). Bumble bees are important 

pollinators for both wild and cultivated plants, and 

there is now a thriving trade in commercial 

colonies, shipped to many parts of the world, for 

pollination of crops such as tomatoes, blueberries, 

and raspberries, both in greenhouses and open 

fields (Velthuis & van Doorn 2006). The loosely 

regulated trade of commercial bumble bees has led 

to the introduction of a variety of endoparasites, 

with possible spillover to conspecifics and other 

species in the wild bumble bee community, or to 

native species when the commercial species are 

non-native (Colla et al. 2006; Graystock et al. 

2013b). We are still discovering the extent and 

frequency of parasite spread to wild communities 

through commerce, and the consequences of these 

introductions for native bees. As a prelude to 

potential regulation, such as a “clean stock” 

mandate that bees be certified as parasite-free 

before being shipped (Strange et al. 2023), it is 

important to know the diversity of known bumble 

bee endosymbionts, their impacts on hosts (when 

known), and potential mechanisms for preventing 

future introductions. Here we review the literature 

and describe the diversity, pathology, and 

detection methods for bumble bee viruses, 

bacteria, protozoans, fungi, and nematodes, as 

well as associated knowledge gaps.  

1) SYMBIONTS POTENTIALLY DELETERIOUS TO BUMBLE 

BEES 

In this section, we address some of the most 

important, most commonly encountered, and best-

known potentially deleterious internal symbionts 

of bumble bees (i.e., endosymbionts), particularly 

those that are of interest in captive rearing 

environments. This is far from a complete list (See 

supplementary Symbiont List in Appendix I) but 

interested readers who wish to learn about some of 

the more obscure organisms associated with 

bumble bees are encouraged to seek the works on 

parasitism (Beaurepaire et al. 2020; de Miranda et 

al. 2013; Macfarlane et al. 1995; Schmid-Hempel 

1999) and bumble bee natural history (Alford 1975; 

Goulson 2010). Additionally, we use the term 

“parasite” broadly to refer to organisms of all taxa, 

including viruses, that sustain themselves at the 

expense of their hosts and have the potential to 

cause harm to their hosts, a definition which, for 

our purposes, also encompasses the term 

“pathogen”. Here we focus on known bumble bee 

endosymbionts; a review of known bumble bee 

ectosymbionts can be found in Evans et al. (2023). 

Recommendations for implementing a clean stock 

program to detect and prevent the spread of 

parasites of concern in commercial rearing 

facilities that pose a threat to wild bees can be 

found in Strange et al. (2023). 

VIRUSES 

To date, all of the named viruses detected in 

bumble bees have previously been reported from 

honey bees. There are approximately 60 honey bee 

viruses currently known, although next-

generation sequencing technologies are allowing 

for the exploratory discovery of additional viruses 

of managed honey bees and wild bees 

(Beaurepaire et al. 2020; de Miranda et al. 2013; 

Remnant et al. 2017; Schoonvaere et al. 2016). A 

single virus, perhaps specific to bumble bees, was 

noted in three North American species in the 1980s 

(present in B. pensylvanicus, B. impatiens, and B. 

fervidus; absent in B. bimaculatus and B. vagans), but 

nothing is known about these “entomopoxvirus-

like particles”, aside from their original description 

(Clark 1982). Most honey bee-associated viruses 

found in bumble bees are single-stranded, 

positive-strand RNA (ss-RNA) viruses. The 

structure of these ss-RNA viruses allows for the 

diagnosis of active replication through detection of 

the negative (replicating) strand. Although 

negative-strand detection has indicated that the so-

called honey bee viruses do replicate within 

bumble bees (Fürst et al. 2014; Li et al. 2011; 

Radzevičiūtė et al. 2017), the effects of infection on 

individuals and colonies are largely unknown, and 

it is not clear whether presence of these viruses is 

maintained largely through spillover or whether 

substantial transmission occurs within the wild 

bee community (Manley et al. 2015). Many honey 

bee viruses persist within honey bee colonies as 

non-apparent, chronic infections that exhibit 

symptoms only when the colony is exposed to 

additional stressors or intracuticular exposure, 

such as seen with the strains transmitted by Varroa 

mites (McMenamin et al. 2016). Although these 

viruses are considered honey bee viruses, there is 

https://biologicaldiversity.org/w/news/press-releases/elusive-pacific-northwest-bumblebee-listed-as-endangered-2021-08-23/
https://biologicaldiversity.org/w/news/press-releases/elusive-pacific-northwest-bumblebee-listed-as-endangered-2021-08-23/
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little known of their true host ranges or their ability 

to cause disease in non-Apis hosts (Tehel et al. 

2016).  

Deformed Wing Virus (DWV) is one of the most 

commonly detected honey bee viruses in both 

Europe and North America (Dolezal et al. 2016; 

McMahon et al. 2015). DWV is known to affect 

colonies negatively and can be transferred by 

feeding on infected pollen. Although infected 

individuals often eclose as adults with crippled 

wings, cryptic and asymptomatic infections are 

known, and other factors can deform the wings of 

bees during pupation, including infections of 

Vairimorpha (Nosema) bombi (Rutrecht & Brown 

2009). The first detection of the virus in bumble 

bees was based on visual inspection of overt 

pathology. In a commercial rearing facility in 

Europe, about 10% of new B. terrestris queens 

exhibited characteristic crumpled wings upon 

eclosion, and these, as well as asymptomatic honey 

bees in a co-located apiary, were shown to be 

harboring DWV (Genersch et al. 2006). The host 

range of DWV might be quite broad, however, as 

replicating DWV has been found in a number of 

insect orders, including Blattodea and 

Dermaptera, as well as in Varroa destructor, a 

member of the class Arachnida and an ectoparasite 

of honey bees (Gisder & Genersch 2016; Manley et 

al. 2015).  A recent study has documented the 

ongoing potential replacement of genotypes of 

DWV in honey bees (Paxton et al. 2022).  

Using molecular means, DWV has been 

detected across a broad spectrum of wild bee hosts 

in many families. In the United Kingdom, 

asymptomatic cases of DWV have been detected in 

wild, flying individuals of B. terrestris and B. 

pascuorum, as well as in the wasp Vespula vulgaris 

(Evison et al. 2012). Prevalence of DWV is often 

quite high in some of the insect populations 

surveyed, (e.g., Apis mellifera (100%); B. terrestris 

(29%), and the wasp V. vulgaris (30%)), although 

other species of bumble bees surveyed at these 

same sites were free of DWV (Evison et al. 2012). 

DWV has also been detected in North American 

bumble bee species, including field-collected B. 

ternarius and B. vagans, wild and lab-reared B. 

huntii, and commercially sourced B. impatiens 

(Levitt et al. 2013; Li et al. 2011; Sachman-Ruiz et 

al. 2015; Singh et al. 2010). The virus has also been 

observed in bumble bees from commercially 

sourced colonies in Europe (Evison et al. 2012; 

Graystock et al. 2013b). In North America, active 

replication of DWV has been observed in B. huntii, 

B. impatiens, and B. vagans (Levitt et al. 2013; Li et 

al. 2011). There were no measurable differences 

between quantified levels of virus in wild bees and 

wild-caught honey bees in a study in the United 

States, although wild-caught honey bees had much 

higher levels in a quantification study in the 

United Kingdom (Dolezal et al. 2016; McMahon et 

al. 2015). In a survey of B. atratus in Colombia, 

100% of the bees from seven nests screened for 

parasites had DWV (Gamboa et al. 2015) and both 

native and introduced species of Bombus in 

Argentina were found to have a variety of viral 

pathogens (Arismendi et al. 2021).  

Few experiments have addressed the incidence 

of disease in DWV-infected bumble bees, but DWV 

has been shown to increase mortality in 

experimentally infected individuals both alone 

and with co-infection with the protozoan Apicystis 

bombi (Fürst et al. 2014; Graystock et al. 2016). 

Although a laboratory study considering the 

efficacy of proposed natural transmission routes 

suggested that transmission in the wild may be 

limited (Gusachenko et al. 2020; Streicher et al. 

2023), research has demonstrated spillover from 

honey bees to bumble bees (Tehel et al. 2022) and a 

potential introduction with non-native bumble 

bees (Arbetman et al. 2013). The closely related 

Varroa destructor viruses (VDVs) and kakugo virus 

(KV) are considered by some to be variants of a 

DWV species complex (McMahon et al. 2015). 

Alger et al. (2019) examined spillover of honey bee 

viruses to wild bumble bees and found DWV and 

Black Queen Cell Virus (BQCV) to be higher in 

bumble bees foraging in areas where apiaries were 

found. Additionally, they confirmed the presence 

of these viruses on flowers near apiaries, which 

indicates the potential for spread of bee viruses 

due to shared flower use in agricultural landscapes 

where managed bees are most commonly used.  

Acute Bee Paralysis Virus (ABPV), Kashmir Bee 

Virus (KBV), and Israeli Acute Paralysis Virus 

(IAPV) are closely related and considered strains 

of the same virus complex (AKI-complex) (Gisder 

et al. 2009; McMahon et al. 2015). ABPV was the 

first honey bee virus to be detected in bumble bee 

hosts, and all bumble bee species tested are 

susceptible to experimental infection and show 
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classic symptoms, although its occurrence in 

natural populations and effect on bumble bee 

health through natural infection routes are 

unknown (Bailey & Gibbs 1964). In honey bees, 

ABPV causes trembling, loss of motor control, and 

eventual death within a few days of infection 

(Bailey & Gibbs 1964). ABPV is systemic but found 

in high concentrations within the salivary glands 

of honey bees and can be transmitted through 

pollen, honey, and trophallaxis (Bailey & Gibbs 

1964; Benjeddou et al. 2001). The virus is shed in 

large quantities in feces and remains infectious for 

months (Bailey & Gibbs 1964).  

A recent survey in the United Kingdom found 

ABPV to be the most common virus detected in 

bumble bees, and that ABPV was more common in 

bumble bees than in honey bees collected from the 

same sites (McMahon et al. 2015). Commercial 

colonies of B. impatiens in Mexico also tested 

positive for ABPV (Sachman-Ruiz et al. 2015). 

ABPV was detected in wild B. atratus in Colombia, 

though in lower prevalence than other viruses in 

the screening (Gamboa et al. 2015). Although KBV 

has been reported from bumble bees in North 

America and New Zealand, these records are 

vague and do not include which species were 

infected (Singh et al. 2010; Ward et al. 2007). 

However, one colony of commercial B. impatiens 

tested positive for KBV in Mexico (Sachman-Ruiz 

et al. 2015). KBV is detectable in feces, suggesting 

this may be a relevant infection route for foraging 

bees sharing floral resources (Hung 2000).  

In addition to detection within Bombus spp., 

there is some information on the transmission and 

virulence of viruses in the AKI-complex for 

Bombus. IAPV causes shivering, paralysis, and 

death in infected honey bees, with increased 

mortality in the presence of Varroa (Gisder et al. 

2009; Palacios et al. 2008). IAPV has been detected 

in commercially reared B. impatiens, and cross-

infectivity studies suggest that transmission 

between honey bees and bumble bees can occur 

through shared food sources (Sachman-Ruiz et al. 

2015; Singh et al. 2010). The route of infection may 

be very important to the virulence of this virus 

complex. Orally administered IAPV and KBV did 

not induce mortality in infected B. terrestris 

individuals, but KBV-infected microcolonies 

suffered slower colony establishment and lower 

offspring production, with the latter also seen for 

IAPV (Meeus et al. 2014). A subsequent study has 

shown that oral administration can result in acute 

infections with associated virulence, but at much 

higher doses (Wang et al. 2018). Another study 

showed that injections of as few as 20 particles of 

IAPV into B. terrestris caused rapid mortality, with 

all experimental bees dead after only eight days; in 

contrast, bees injected with as many as 20,000 

particles of another, unrelated virus, Slow Bee 

Paralysis Virus (SBPV), showed no increase in 

mortality over control bees (Niu et al. 2016). Yet, 

SBPV virulence can be condition-dependent, with 

even orally administered SBPV increasing B. 

terrestris mortality under nutritional limitation 

(Manley et al. 2015). SBPV has also been detected 

in bumble bees from the United Kingdom, at a 

slightly, but non-significantly, higher prevalence 

than honey bees, whereas IAPV was not detected 

in either host (McMahon et al. 2015).   

In honey bees, Chronic Bee Paralysis Virus 

(CBPV) is recognizable by the presence of 

congregations of trembling bees at the hive 

entrance, yet infections rarely impact colonies 

unless other stressors, such as overcrowding or 

nutritional stress, are also present (Allen & Ball 

1996). Replicating CBPV has been detected in non-

Apis organisms, including the mite Varroa 

destructor, and the ant Camponotus vagus, which 

opportunistically feeds on dead honey bees, 

suggesting a wider host range for this virus than is 

currently documented (Celle et al. 2008). CBPV 

was tied with ABPV for the most common virus 

detected in commercial colonies of B. impatiens in 

Mexico (Sachman-Ruiz et al. 2015), and it has also 

been detected in native bumble bees in Argentina 

(Fernandez de Landa et al. 2020) and Colombia 

(Gamboa et al. 2015).  Cloudy Wing Virus (CWV, 

initially described as CW Particle) is a similar, but 

likely unrelated virus (Bailey et al. 1980). There are 

few data about the pathology of this virus, even in 

honey bees. It appears to exist primarily as an 

asymptomatic infection in honey bees, although 

under some circumstances, it may cause rapid 

mortality (Bailey et al. 1980; Carreck et al. 2010). In 

Korea, the virus has been detected in captive, field-

deployed colonies of B. terrestris and B. ignitus, and 

may have been an agent of mortality when present 

in combination with other viruses, such as KBV 

and Sacbrood virus (SBV) (Choi et al. 2010).     
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Black Queen Cell Virus (BQCV) is one of the 

most common honey bee viruses and has been 

detected in multiple hymenopteran hosts, 

including ants, wasps, and bees including miner 

(Andrenidae), sweat (Halictidae), carpenter 

(Xylocopa; Apidae), leaf-cutting (Megachilidae) 

and bumble (Bombus; Apidae) bees (Levitt et al. 

2013; Peng et al. 2011; Ravoet et al. 2014; Singh et 

al. 2010; Zhang et al. 2012). The distribution of the 

virus is largely unknown, but, due to its 

prevalence in honey bees (e.g., 98.5% of sampled 

honey bees in Pennsylvania (Singh et al. 2010)), it 

is expected to be widespread. Bumble bees from 

commercial facilities have been recorded 

harboring the virus in the United States (Singh et 

al. 2010), Mexico (Sachman-Ruiz et al. 2015), and 

Argentina (Reynaldi et al. 2013), as have both 

laboratory-reared and field-caught B. huntii in 

Utah, United States (Peng et al. 2011), and wild 

bumble bees in Colombia (Gamboa et al. 2015). 

Replicating BQCV in bumble bees has also been 

detected in multiple sites across Europe 

(Radzevičiūtė et al. 2017). Field surveys show that 

BQCV is common in both honey bees and bumble 

bees in the United Kingdom (McMahon et al. 

2015), but a study in Iowa (United States) detected 

very few bumble bees with the virus, in spite of 

high prevalence in apiaries (Dolezal et al. 2016). 

BQCV has been detected in pollen loads harvested 

from honey bee workers (Singh et al. 2010), and in 

wild bumble bees foraging near apiaries (Alger et 

al. 2019; McNeil et al. 2020). BQCV replicates in the 

tissues of the midgut of B. huntii and is distributed 

throughout the body, yet infected individuals 

show no overt symptoms (Peng et al. 2011). In 

honey bees, infection by BQCV is more detrimental 

to larvae, with adults only suffering from infection 

when coinfected with the microsporidian 

Vairimorpha apis (Ball & Bailey 1999). If such age-

specific effects of BQCV infection are also present 

in bumble bees, it may be difficult to assess the 

presence and effects of BQCV infections, although 

Salvarrey et al. (2021) were able to detect BQCV in 

over 90% of B. pauloensis workers in the wild.   

Sacbrood virus (SBV) is a disease that causes 

mortality in honey bee larvae. Infected individuals 

cannot molt and eventually die, leaving distinctive 

carcasses full of virus-laden ecdysial fluid that are 

usually removed from the colony by vigilant 

workers (Bailey 1975). Although the effect of SBV 

infection on bumble bees is unknown, it has been 

detected in non-Apis hosts on three continents, 

including in B. ternarius, B. vagans, B. atratus, 

Andrena spp., and the paper wasp Polistes metricus 

(Ravoet et al. 2014; Reynaldi et al. 2013; Singh et al. 

2010). The virus can also be detected in pollen 

collected by foraging honey bees (Singh et al. 

2010), suggesting a possible transmission route to 

captive-reared bumble bees. In a sample of 33 wild 

bumble bee individuals from Iowa, SBV was the 

most commonly detected virus of five tested for, 

with 52% testing positive for SBV (Dolezal et al. 

2016). However, there have not been any studies 

that have tested for replicating strands of SBV or 

examined the impacts of SBV infection on bumble 

bees, so the impact of this virus is unknown 

(Gisder et al. 2009).    

Bumble bees have been surveyed for only a few 

honey bee viruses, yet these pathogens appear 

common among many species and across a wide 

geographic range. There will likely be more honey 

bee viruses detected in bumble bees, given that 

others, such as Apis mellifera Filamentous Virus 

(AmFV), have been detected in more distantly 

related solitary bees, such as Andrena vaga, A. 

ventralis, Osmia bicornis and O. cornuta (Ravoet et 

al. 2014). AmFV was recently discovered in native 

Bombus in the Andes (Plischuk et al. 2021). 

Unraveling the infection dynamics, routes of 

transmission, and distinct physiological and 

colony-level effects of these viruses on bumble bee 

hosts will be necessary to determine the impacts of 

honey bee viruses on bumble bee hosts (Tehel et al. 

2016).    

BACTERIA 

 Little is known about bacterial diseases in 

bumble bees, but early reports speculated that 

pathogenic bacteria were responsible for some 

larval mortality (Frison 1926). More recently there 

has been a focus on the beneficial effects of core 

bacteria associated with the gut of Apid bees 

(Kwong & Moran 2016), and how these microbes 

may aid in resistance against parasite infection 

(Koch & Schmid-Hempel 2011a; Koch & Schmid-

Hempel 2011b; Mockler et al. 2018). While bacterial 

diseases of honey bees such as American 

foulbrood (Paenibacillus larvae) and European 

foulbrood (Melissococcus plutonius) can be 

devastating, there are few homologous reports of 

bacterial infections in bumble bees (Fünfhaus et al. 

2018). Many bacteria that have been found in 
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bumble bees to date appear to be largely either 

commensal or beneficial, though further work is 

warranted on this topic. Bacteria that have been 

identified from bumble bees include Bacillus cereus, 

B. pumilus, Brevibacillus laterosporus, Burkholderia 

cepacia, Enterobacter (formerly Aerobacter) cloacae, 

Lysinibacillus (as Bacillus) fusiformis, Paenibacillus 

glucanolyticus, Spiroplasma apis and S. melliferum 

(Ahmed et al. 2007; Macfarlane et al. 1995; Marche 

et al. 2016; Meeus et al. 2012; Přidal 2001; 2002; 

Přidal et al. 1997; Schmid-Hempel 1999).  

Spiroplasma melliferum and S. apis are 

pathogenic bacteria that are associated with May 

disease in honey bees and both are known to cause 

mortality (Clark et al. 1985; Meeus et al. 2012). 

Although both are normally associated with honey 

bees, they have been detected on the surface of 

flowers and within the hemolymph and guts of 

numerous flower-visiting insects, including B. 

impatiens, B. pensylvanicus, B. pascuorum, B. 

pratorum, and B. atratus, and the leaf-cutting bees 

Osmia cornifrons and O. bicornis (Clark et al. 1985; 

Gamboa et al. 2015; Meeus et al. 2012; Ravoet et al. 

2014). The presence of high levels of bacteria, like 

Spiroplasma spp., in bumble bee guts may indicate 

their potential as a pathogen in bumble bees (Clark 

et al. 1985), but this has not been verified. In honey 

bee queens, E. cloacae causes B-melanosis, a disease 

of the ovaries that sterilizes the queen (Fyg 1964), 

but its effect in bumble bees is unrecorded 

(Schmid-Hempel 1999). Bumble bees have rarely 

been screened for the presence of Wolbachia, but 

there are records of this bacterium being detected 

in European bumble bee species  (Evison et al. 

2012; Gerth et al. 2015). The effects of Wolbachia on 

hosts are complex (Werren et al. 2008); it is 

predominantly vertically transmitted and not 

always pathogenic. To date, we have no 

knowledge of the kind of association this 

bacterium has with bumble bees. Research on 

impacts of bacterial infections and microbiome 

studies are urgently needed to understand better 

how bacteria should be managed in a clean stock 

program.  

PROTOZOANS 

The trypanosomatid Crithidia bombi is an 

intestinal parasite found in species throughout the 

genus Bombus, with a worldwide distribution 

(Schmid-Hempel & Tognazzo 2010). The 

distribution of this parasite within Bombus remains 

relatively poorly studied and most information on 

its pathology comes from B. terrestris and B. 

impatiens. A close relative, C. expoeki, was described 

from Bombus samples collected in both Europe and 

North America and is assumed to be a similar 

pathogen (Schmid-Hempel & Tognazzo 2010). In a 

survey throughout the United States, C. bombi was 

far more common than C. expoeki and co-occurred 

in the same hosts (Tripodi et al. 2018). Similarly, 

genetic data indicate another undescribed species, 

nicknamed “C. mexicana”, that was detected in 

bumble bee samples from southern Mexico 

(Gallot-Lavallée et al. 2016), and additional 

undescribed trypanosomatids in the United States 

(Tripodi et al. 2018). In the US, C. bombi prevalence 

is highly variable, but can be quite high, for 

example ranging from 0 - 82 % in Massachusetts 

(Gillespie 2010). An extensive survey of bumble 

bees in the USA found Crithidia to be widespread, 

yet at low prevalence across species at the sites 

sampled (Cordes et al. 2012), however another 

study found regional variation in infection rates 

(Tripodi et al. 2018). In addition to in Bombus, C. 

bombi has been detected in the non-Apidae hosts 

Andrena vaga and Osmia bicornis in Europe (Ravoet 

et al. 2014), including experimental evidence for 

active replication in O. lignaria and M. rotundata 

(Figueroa et al. 2021; Ngor et al. 2020), though 

nearly nothing is known about the pathogenicity 

of Crithidia in non-Bombus hosts (Figueroa et al. 

2021). The honey bee trypanosomatid parasite 

Lotmaria passim has been detected molecularly in 

bumble bees from the United States, but may not 

be a true parasite of bumble bees (Tripodi et al. 

2018). Lotmaria passim has also been found in wild 

bumble bees in the Andes mountains (Plischuk et 

al. 2021).      

Crithidia parasites are flagellated and are found 

in the gut lumen of the host bee, anchoring to the 

ileum epithelium with their flagellum (Koch et al. 

2019). Infection in bumble bees can impair the 

foraging abilities of infected workers (Gegear et al. 

2005; Otterstatter et al. 2005), reduce queen 

hibernation survival (Fauser et al. 2017), and 

reduce colony founding success (Brown et al. 

2003). Although acute mortality is rarely observed 

(Brown et al. 2003), under conditions of nutritional 

stress, infected workers are 50% more likely to 

succumb to infections than their well-fed 

counterparts (Brown et al. 2000). In general, the 
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outcomes of infection are considered to be context- 

and condition-dependent (Sadd & Barribeau 2013).  

Crithidia is shed in the feces and can be 

transmitted through feeding. Experimental 

evidence shows that bumble bees can contract C. 

bombi infections while feeding on flowers that have 

been previously visited by infected bees (Adler et 

al. 2020; Durrer & Schmid-Hempel 1994). 

Transmission dynamics on flowers vary by plant 

species and environmental conditions, with 

deposition and acquisition for foraging B. impatiens 

varying by flower parts, and exposure to UV 

radiation significantly reducing pathogen survival 

on flowers (Figueroa et al. 2019). Moreover, 

differences among plant species in transmission 

potential for individual B. impatiens workers 

(Adler et al. 2018) can affect colony-level infection 

patterns (Adler et al. 2020), highlighting the role of 

flowers in mediating transmission and prevalence 

in this bumble bee species. However, there is very 

limited understanding of C. bombi transmission 

patterns via flowers beyond B. impatiens and B. 

terrestris (Ruiz-González et al. 2012). Bees from 

commercial rearing facilities have tested positive 

for this parasite upon delivery (Gegear et al. 2005; 

Graystock et al. 2013b; Murray et al. 2013; 

Otterstatter et al. 2005). Higher infection levels 

were found in wild bumble bees near greenhouses 

that had deployed commercial bumble bees than 

in wild populations far removed from such sites, 

lending support to the “spillover hypothesis” 

(Colla et al. 2006; Graystock et al. 2014).  

The neogregarine, Apicystis bombi, is a widely 

distributed parasite of multiple bumble bee species 

(Lipa & Triggiani 1996). In bumble bees, although 

there are few experimental assessments of 

virulence, the parasite can have severe effects. 

Apicystis bombi decimates the fat body of infected 

individuals, and field-collected infected spring 

queens of European species die before founding 

colonies (Jones & Brown 2014; Rutrecht & Brown 

2008). Commercially sourced colonies of B. 

terrestris were found to harbor this parasite, 

suggesting a real danger of pathogen spillover of 

this organism from captive to wild populations 

(Graystock et al. 2013b). Unlike Crithidia, Apicystis 

was not associated with greenhouse sites in a 

Canadian study, although a study in the United 

Kingdom did see higher prevalence of both 

parasites near greenhouse sites (Colla et al. 2006; 

Graystock et al. 2014). Population genetics of A. 

bombi from Argentina, Colombia, Mexico, and 

Europe also suggest that A. bombi in Argentina 

may have originated from the recent importation 

of non-native B. terrestris from Europe to Chile as 

commercial pollinators (Aizen et al. 2019; 

Maharramov et al. 2013). However, B. terrestris has 

not been documented in Colombia, thus the high 

prevalence of A. bombi in South America might be 

due to more complex factors (Gamboa et al. 2015). 

Feeding experiments show that A. mellifera are 

susceptible to A. bombi infections, and this parasite 

has been infrequently reported from A. mellifera in 

Europe, Japan, and South America (Graystock et 

al. 2013a; Lipa & Triggiani 1996; Morimoto et al. 

2013; Plischuk et al. 2011; Ravoet et al. 2014; Schulz 

et al. 2019). Additionally, it has been detected in 

European specimens of Andrena vaga, A. ventralis, 

Heriades truncorum, Osmia bicornis, and O. cornuta 

(Ravoet et al. 2014). Apicystis cryptica was recently 

described from B. pascuorum from Belgium 

(Schoonvaere et al., 2020), but this species has not 

been reported from bees in the United States (Ivers 

et al. 2022). 

FUNGI 

The microsporidian Vairimorpha (Nosema) bombi 

(Tokarev et al. 2020) has a cosmopolitan 

distribution (Cameron et al. 2016; Koch & Strange 

2012; Li et al. 2011) and is found throughout the 

genus Bombus; however, evidence suggests that 

some species and/or subgenera are differentially 

infected (Cameron et al. 2011; Cordes et al. 2012). 

Furthermore, some declines of bumble species 

have been linked to presumed epizootic events 

involving V. bombi, including the recent declines of 

the North American subgenera Bombus sensu stricto 

and Thoracobombus (Cameron et al. 2011; Malfi et 

al. 2014). However, while the incidence of V. bombi 

in North America has increased in recent times, 

there is currently no evidence to support the 

hypothesis that contemporary strains of the 

parasite were exotic or introduced from Europe 

(Cameron et al. 2016). Vairimorpha bombi has 

frequently been detected in commercially sourced 

colonies and greenhouse-associated wild 

populations, but the evidence for spillover remains 

inconsistent and inconclusive (Colla et al. 2006; 

Graystock et al. 2013b; Murray et al. 2013; 

Sachman-Ruiz et al. 2015; Whittington & Winston 

2003). 
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Infections of V. bombi occur through the 

digestive tract, with spores usually concentrated in 

the Malpighian tubules, the tissues of the midgut 

and the fat body, although spores can also present 

in muscles, and the accessory glands, ovaries, 

accessory testes, and testes of reproductive adults 

(Larsson 2007; Otti & Schmid-Hempel 2007). 

Bumble bee colonies that are infected with V. bombi 

can suffer from a reduction in reproductive 

capacity (van Der Steen, 2008). Mortality is higher 

in infected males, and the survivors produce fewer 

viable sperm, while infected gynes exhibit swollen 

abdomens and are more hesitant to mate than their 

uninfected counterparts (Otti & Schmid-Hempel 

2007). Infections of colonies early in the colony 

cycle lead to an absence of the production of 

sexuals (Otti & Schmid-Hempel 2008). However, 

other studies have found V. bombi to have no effect 

upon colony growth or reproductive output 

(Whittington & Winston 2003). Much of what is 

known about the pathology of V. bombi infections 

is from a limited number of species (B. terrestris 

and B. lucorum), and species may be differentially 

affected by the disease (Brown 2017). For example, 

although infected colonies of B. lucorum were less 

likely to produce gynes, when they were 

produced, they were fully functional and capable 

of mating, unlike the gynes produced in B. 

terrestris colonies (Rutrecht & Brown 2009). 

Recently, B. impatiens males were shown to have a 

high tolerance to experimentally established V. 

bombi infections (Calhoun et al. 2021). 

Recent molecular screening of V. bombi in wild 

bee communities across old fields and wildflower 

strips in upstate NY (USA) found the pathogen to 

be virtually absent across two years of sampling 

(Figueroa et al. 2019; Graystock et al. 2020), 

highlighting that factors that contribute to 

differing prevalence rates are not sufficiently 

understood. Conversely, bumble bees in 

Argentina, Colombia, the United Kingdom, the 

USA, and Uruguay have regularly tested positive 

for V. ceranae (Nosema ceranae), with low/absent 

prevalence of V. apis (Nosema apis), (Arbulo et al. 

2015; Figueroa et al. 2019; Fürst et al. 2014; Gamboa 

et al. 2015; Graystock et al. 2014; Graystock et al. 

2020; Plischuk et al. 2009); both V. ceranae and V. 

apis are infective agents in honey bees. 

Additionally, V. ceranae infections have been 

confirmed infectious via microscopy in bumble bee 

hosts from Argentina, Uruguay, and the United 

Kingdom (Brown 2017). Experimental feeding 

experiments with B. terrestris have shown that 

bumble bees are susceptible to V. ceranae infection, 

and that workers suffer increased mortality 

(Graystock et al. 2013a). Bumble bees in China, 

Thailand, and Mexico also carried V. ceranae, novel 

strains of Vairimorpha that might be undescribed 

species, and some species of Vairimorpha not 

associated with bee hosts, but the infection status 

of these novel detections remains unclear (Gallot-

Lavallée et al. 2016; Li et al. 2011; Sinpoo et al. 

2019). A new genus and species of microsporidian, 

Tubulinosema pampeana was recently described 

from tissue infections in B. atratus hosts from 

Argentina, and it has also been detected in the 

same species in Uruguay (Plischuk et al. 2017; 

Plischuk et al. 2015). The only microsporidians that 

have been shown to cause true infections in wild 

bumble bees are V. bombi, V. ceranae, and T. 

pampeana (Brown, 2017). In addition to A. mellifera 

and Bombus, V. ceranae has been detected in wild 

European specimens of Andrena ventralis, Heriades 

truncorum, Osmia bicornis, and O. cornuta (Ravoet et 

al. 2014), with increasing evidence of active 

infections in O. bicornis (Bramke et al. 2019; Müller 

et al. 2019). The health impacts of V. ceranae on wild 

bee communities, especially alongside co-

occurring stressors, are largely unknown. 

There are a few records of ascomycetes fungi 

infecting bumble bees, but many members of this 

group are primarily saprophytic and only 

opportunistically pathogenic, while others are 

obligate pathogens of bees (Foley et al. 2014; Jensen 

et al. 2013; Macfarlane 1976). MacFarlane (1976) 

cultured a number of fungi from living and dead 

bumble bees, including a species of Aspergillus, but 

did not show that these fungi were capable of 

causing infection. In honey bees, Aspergillus 

species are the causative agents of stonebrood, a 

rarely observed larval malady of honey bees (Foley 

et al. 2014). On the whole, the Aspergillus are 

considered more saprophytic than pathogenic, but 

many species are capable of infecting 

immunocompromised hosts (both vertebrate and 

invertebrates) and some strains have been shown 

to be fully pathogenic to seemingly healthy honey 

bees (Foley et al. 2014; Jensen et al. 2013; 

Leatherdale 1970). The species Aspergillus candidus 

and A. niger have been recorded from bumble bee 

hosts, but their pathogenic roles are unclear 

(Macfarlane 1976; Schmid-Hempel 1999). 
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The 28 species of Ascosphaera are known as bee 

specialists and have been described from the nests 

and larvae of dozens of wild bee species, with all 

known cases of pathogenic Ascosphaera reported 

from larvae and causing a suite of characteristic 

symptoms leading to the common name 

chalkbrood (Wynns et al. 2013). Ascosphaera apis is 

the causative agent of chalkbrood, a larval disease 

of honey bees, and fungal spores are commonly 

found in the honey bee-sourced pollen fed to 

captive bumble bees (e.g., Graystock et al. 2013b; 

Maxfield-Taylor et al. 2015). However, recent 

research has reported A. apis infecting adult 

bumble bees in Oregon (United States) (Maxfield-

Taylor et al. 2015). In a captive-rearing experiment, 

the body cavities of wild-caught queens that died 

prior to producing colonies were filled with 

vegetative and sporulating Ascosphaera species that 

the authors genetically identified as A. apis. 

Whether or not the fungus was responsible for the 

death of the queens or whether bumble bee larvae 

are also susceptible to the disease remains to be 

seen. However, none of the ascomycetes recorded 

from bumble bees have been conclusively shown 

to be pathogenic by satisfying Koch’s postulates, 

so their true status as pathogens in bumble bees is 

uncertain (Macfarlane 1976). 

Experiments to see whether bumble bees could 

vector the biological control fungus Beauveria 

bassiana throughout greenhouses have shown that, 

at high doses, the fungus is capable of causing 

mortality to bees (Kapongo et al. 2007). Similar 

results were seen in efforts to use bumble bees as 

vectors of Metarhizium anisopliae (Smagghe et al. 

2013). It is unknown how frequent infections of 

these fungi are in wild bumble bees, but these two 

fungi have been isolated from bumble bees in 

North America (Macfarlane 1976). Yeasts in the 

genus Candida (many now classified as 

Metschnikowia) have been cultured from bumble 

bees, nests, and flowers, but these are typically 

considered to be nectar yeasts, and likely only 

facultatively pathogenic to bees (Batra et al. 1973; 

Brysch-Herzberg 2004; Macfarlane 1976). There are 

other sporadic records of entomopathogenic fungi 

associated with bumble bees, including Hirsutella 

sp., Acrostalagmus sp., Lecanicillium (formerly 

Cephalosporium or Verticilium) lecanii, Geomyces 

(formerly Chryososporium) pannorum, 

Parascedosporium (formerly Doratomyces) putredinis, 

Penicillium sp., and Isaria (formerly Paecilomyces) 

farinosus (Batra et al. 1973; Goulson 2010; 

Macfarlane 1976; Schmid-Hempel 1999; 

Zimmermann 2008). An unidentified mass of 

hyphal growth was also described infecting the gut 

tissue of living adult bumble bees collected in 

Illinois and Oregon (United States), but the 

identity of this fungus remains unknown 

(Kissinger et al. 2011). 

NEMATODES 

The nematode Sphaerularia bombi has a 

worldwide distribution with infection records in 

dozens of bumble bee species from North America, 

South America, Europe and New Zealand (Colgan 

et al. 2020; Goldblatt & Fell 1984; Lubbock 1861; 

Lundberg & Svensson 1975; Macfarlane & Griffin 

1990; McCorquodale et al. 1998; Plischuk & Lange 

2012; Poinar & Van Der Laan 1972). This parasite 

exclusively infects bumble bee queens, and upon 

infection, the queen is effectively sterilized. 

Although infected queens may live as long as 

uninfected queens (Macfarlane et al. 1995), they do 

not initiate nests upon emergence, but rather 

resume hibernaculum-seeking behavior (Alford 

1969). Because infection with this parasite prevents 

queens from initiating colonies, it has the potential 

to impact populations severely.    

Mated S. bombi females infect bumble bee 

queens as they overwinter in soil cells. They 

develop within the hemocoel of the host 

throughout the winter, maturing upon bumble bee 

emergence in spring. Mature, gravid females 

control the corpora allata of host queens, 

suppressing chemical signals that allow uninfected 

queens to mature and seek nesting sites upon 

emergence (Macfarlane & Griffin 1990). Each 

female can produce over 100,000 eggs, which are 

released and hatch in the hemocoel of the host 

queen (Macfarlane & Griffin 1990). At the third 

stage, juvenile nematodes burrow into the midgut 

of the host. These juveniles are subsequently 

excreted into shallow pits in the soil excavated by 

the infected host queen, where they will mature 

and wait for the next generation of overwintering 

queens (Poinar & Van Der Laan 1972). Because the 

nematodes drop into the soil to await transmission 

to the next generation of queens, S. bombi is not 

expected to be a pest of captive-reared bumble 

bees. 

There are few records of mermithid parasites in 

bumble bee hosts, but they are geographically 
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widespread, with records from North America, 

South America, Europe, and Asia (Durrer & 

Schmidhempel 1995; Kosaka et al. 2012; Kubo et al. 

2016; MacLean 1966; Mullins et al. 2019; Plischuk 

et al. 2017; Rao et al. 2017; Tripodi & Strange 2018). 

Because the parasitic stages of mermithids are 

devoid of morphological characters that would 

allow their identification, the identity of these 

parasites is largely unknown. One record of a 

mermithid infecting a B. impatiens worker collected 

in Massachusetts (United States) was identified to 

the genus Pheromermis, but nothing is known of its 

life history or whether bumble bees are its primary 

host (Rao et al. 2017). Like S. bombi, these parasites 

require a free-living stage in the soil, so they are 

unlikely to present an issue in rearing facilities. 

Mermithids kill their hosts upon exiting the host’s 

body, but with so few occurrences, they are 

unlikely to have an impact on the population level 

(Tripodi & Strange 2018).    

2) DETECTION, IDENTIFICATION, AND QUANTIFICATION  

GENERAL TECHNIQUES USED TO DETECT AND QUANTIFY 

ENDOSYMBIONTS OF CONCERN 

Detection of bumble bee parasites falls into two 

major categories: molecular methods or visual 

methods. Most parasite detection is destructive, 

requiring that bees be killed prior to examination. 

However, mature or transmitting infections of 

some parasites, including S. bombi, Vairimorpha 

spp., Crithidia spp., and A. bombi, can be visually 

detected in feces, a non-lethal technique (Jones & 

Brown 2014). For some parasites, quantification of 

individual parasites in feces provides an accurate 

estimation of the intensity of the established 

infection, e.g., for Crithidia (Sadd 2011). However, 

such a relationship has not been verified for all 

observable parasites detectable in the feces, and 

false negatives may occur during early stages of 

infection. In addition, low numbers of parasite 

transmission stages may represent false positives, 

where transmission stages, e.g., environmentally 

resistant extracellular Vairimorpha spores, are just 

passing through and are not from established 

infections. This presents an issue for any analysis 

where gut tissue is included and is a potential issue 

in both visual and molecular detection approaches. 

However, in closed systems, such as rearing 

facilities, detection of parasites and pathogens in 

the feces will likely represent actual infections. 

Although tissues of the head and mesosoma can be 

infected, all known parasites can be detected by 

examination of the tissues and hemocoel of the 

metasoma. Different parasites are typically 

detected using different techniques, but these are 

often complementary. Larger organisms such as 

nematodes are visible with light microscopy 

during dissection under low magnification (10–

40x). This is often followed by an examination of 

slide-mounted tissues or homogenates at higher 

magnification (400x) to detect smaller organisms 

(e.g., oocytes of Apicystis cryptica: Schoonvaere et 

al. 2020). Finally, molecular methods can be used 

to detect, identify, and quantify parasites of all 

sizes from tissue extractions.   

Before the development of molecular detection 

techniques, visual detection with light microscopy 

was the predominant mode of screening for 

internal bumble bee parasites. Light microscopy 

allows for the detection of parasites at 400x 

magnification, encompassing a broad diversity of 

organisms. To this day, microscopy continues to be 

employed in the detection and quantification of 

bumble bee parasites via the count of spores or 

cells using a hemocytometer (Fries et al. 2013). 

Some of the strengths of light microscopy include 

that it is low-cost, requires little training to employ, 

and most importantly, it can detect active 

infections through tissue pathology. However, 

there is a risk for false negatives as low-level or 

early stage infections can be missed, suggesting 

that traditional light microscopy may 

underestimate parasite prevalence (Blaker et al. 

2014). False positives are also possible, especially 

for less-experienced researchers who are not fully 

aware of target parasite morphologies. In addition, 

many pathogens are tissue-specific, thus requiring 

the correct tissue to be examined for diagnosis 

(Schmid-Hempel 1999). However, the primary 

benefit of visual detection is the ability to diagnose 

disease and disease intensity, rather than just the 

presence of a potential disease-causing organism. 

In all cases it is preferable that known positive 

samples be observed under the set-up being used, 

to ensure accurate identification and verify the 

ability of the set-up to detect parasites and 

pathogens of interest. For example, Crithidia spp. 

require phase contrast microscopy for good 

visualization. However, even then, detection by 

observers unfamiliar with cell morphology will be 

aided by using fresh samples where some cells will 

be motile. 
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Polymerase Chain Reaction (PCR), developed 

in 1985, is the most commonly employed 

molecular technique for DNA amplification, and it 

has been used to great effect to detect parasites in 

both bumble bees (Blaker et al. 2014; Cordes et al. 

2012; Huang et al. 2015; Koch & Strange 2012) and 

humans (Yang & Rothman 2004). This method uses 

short oligonucleotides, primers, that are designed 

to hybridize with known genetic regions within 

the genomes of targeted organisms. Samples that 

fail to amplify are diagnosed as negative, and 

samples that successfully amplify are diagnosed as 

positive for the targeted parasite. Including control 

regions that amplify bee DNA or cDNA in PCR is 

a common quality control measure used to guard 

against false negatives that can come about 

through poor specimen handling, nucleotide 

extraction or bad reactions. Positive controls 

should also be included in PCR to ensure viability 

of reactions. Similarly, the use of negative controls 

that contain no DNA template can help guard 

against false positives that usually stem from 

laboratory contaminants. With the development of 

primers for multiple targets that do not interfere 

with one another during thermal cycling, PCR can 

be multiplexed for the detection of multiple 

pathogens simultaneously (Huang et al. 2015; 

Procop 2007; Tripodi et al. 2018). One of the 

strengths of PCR is that it can be used to detect 

presence or absence of parasites at very low 

intensities or in small sample volumes. 

Quantitative PCR (qPCR) goes a step further, 

amplifying and detecting the target sequence 

simultaneously and, if properly calibrated, 

yielding a quantitative measure of infection 

intensity. For screening RNA viruses, reverse 

transcriptase PCR (RT-PCR) is used, which 

converts RNA to its complementary DNA strand 

(cDNA), which is then used as template in PCR (de 

Miranda et al. 2013). Standardized protocols for 

PCR-based detection of a variety of common bee 

pathogens have recently been released (de 

Miranda et al. 2021). 

In a double-blind methods comparison, PCR 

was found to have an overall higher sensitivity for 

detecting human-pathogenic microsporidia 

compared to traditional light microscopy, though 

both methods proved effective (Rinder et al. 1998). 

Likewise, Blaker et al. (2014) found significantly 

higher sensitivity for detecting microsporidia in 

bumble bees than light microscopy detected. 

However, increased sensitivity is not always 

desirable. PCR methods do not distinguish 

between exposure and infection, and dead or 

inactivated parasites may still yield positive 

results. Such sensitive methods can diagnose 

samples as positive, regardless of the true infection 

status within the host, thus positive PCR results 

should be interpreted with this caveat in mind 

(Brown 2017). PCR, qPCR, and RT-PCR assays can 

be designed to use either species-specific or broad-

range primers that can detect multiple members of 

a targeted taxon, depending on the desired 

identification level (Graystock et al. 2020; Mullins 

et al. 2019; Procop 2007; Yang & Rothman 2004). 

While broad-range primers allow for the discovery 

of new organisms within a targeted taxon, one of 

the major drawbacks of all primer-based detection 

techniques is that the researcher will only detect 

organisms or groups that are being targeted, and 

that detection is limited to parasites for which 

sequence data are available. However, post-

amplification analysis of PCR products from 

broad-range primers through DNA sequencing 

can be used to identify parasites to species, 

generate additional data, and conduct analyses of 

strain differences that can be useful in 

understanding disease dynamics (Cameron et al. 

2016).  

Current advances in molecular technologies, 

known as next-generation sequencing (NGS) 

platforms, are beginning to allow for pathogen 

screening and sequencing through exploratory 

metagenomics (Gerth & Hurst 2017; Runckel et al. 

2011). Exploratory work with the RNA-Seq 

platform recently detected a number of known 

bumble bee-associated organisms in two bumble 

bee species, as well as two undescribed viruses in 

O. cornuta (Schoonvaere et al. 2016). However, the 

success of these NGS techniques depends on the 

existence of reference databases, such as well-

curated sequence deposits, knowledge of the 

pathology and natural history of the symbionts 

detected and identified, as well as the technical 

ability to process, analyze, and interpret the data 

(de Magalhães et al. 2010). As the use of these 

methods increases, and databases of pathogen 

sequences expand, NGS could provide unexplored 

levels of pathogen screening abilities for bumble 

bee research. However, despite their significant 

value in these regards, NGS approaches would 

currently be unfeasible for a rapid and high-
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throughput clean stock screening program, where 

targeted visual or molecular approaches of known 

parasites and pathogens of concern will be more 

effective. 

VIRUSES 

Because of their small size (typically 20-30 nm 

(James & Li 2012)), viruses are not visible with 

basic microscopy and are primarily detected 

through molecular methods (de Miranda et al. 

2013). Using RT-PCR, specific primers can be 

employed to determine the presence of a virus, and 

the viral load can be quantified using calibrated 

qRT-PCR (e.g., McMahon et al. 2015). In addition, 

it is possible to run a multiplex RT-PCR and screen 

for multiple RNA viruses simultaneously (Chen et 

al. 2004). However, detecting the presence of a 

virus is not equivalent to detecting a viral 

infection. An advantage to the structure of many 

ss-RNA viruses is that it is possible to screen for 

their complementary strand, which, if found, 

indicates active replication within the host (de 

Miranda et al. 2013; Mazzei et al. 2014). This is not 

possible for DNA-based parasites.  

BACTERIA 

Not all bacteria can be cultured on standard 

media (Přidal 2001; Shrivastava 1982) and in 

addition, while some can be easily viewed using 

standard microscopy approaches, the 

morphological delineation of bacterial pathogens 

is difficult. Therefore, molecular methods are 

commonly used for detection of bacteria, such as 

Spiroplasma apis and S. melliferum (Meeus et al. 

2012). Often, culture-based and molecular 

methods are used in conjunction with one another 

in order to determine physical and chemical 

characteristics, experiment with inoculation and 

host specificity, and resolve taxonomic issues 

(Kwong et al. 2014; Kwong & Moran 2013; Praet et 

al. 2018). 

PROTOZOANS 

The infective oocyst of neogregarines and the 

motile stages of trypanosomatids can be detected 

through microscopic examination of tissues, tissue 

homogenates, or fecal samples at 400x. However, 

these organisms have complex life cycles with 

cryptic vegetative growth phases that can be easily 

missed by microscopy, making molecular 

detection methods more reliable. The gross 

morphology of some protozoans makes their 

identification to broad groups rather simple, but 

discerning species morphologically is impossible 

under typical magnification. Morphological 

differences that separate species can be seen with 

scanning electron microscopy and other 

specialized equipment (Liu et al. 1974; Schmid-

Hempel & Tognazzo 2010). Crithidia spp. are quite 

small, typically less than 10 µm long in all stages, 

and some stages are highly mobile and visible 

when alive (Schmid-Hempel & Tognazzo 2010). It 

is important to note that while C. bombi has three 

distinct morphological stages (amastigote: 

spherical form with no visible flagellum; 

choanomastigote: pear-like shape surrounding 

flagellar pocket; and promastigote: large cells with 

long flagellum (Logan et al. 2005; Ruiz-González & 

Brown 2006)), the vast majority of screening efforts 

via microscopy focus on the promastigote stage, 

potentially under-reporting infections of the other 

morphological stages. Spores of neogregarines are 

larger, 21–27 µm, and are easily visible at 400x (Liu 

et al. 1974). Infections can be quantified by 

counting oocysts in a hemocytometer (Human et 

al. 2013). Broad-range primers have been 

developed to detect trypanosomes, including 

Crithidia spp., as well as neogregarines, including 

Apicystis bombi (Meeus et al. 2010; Mullins et al. 

2020; Schmid-Hempel & Tognazzo 2010). In 

preliminary screening, a broad-range primer may 

be used, then positives can be sequenced and 

identified (Gallot-Lavallée et al. 2016). Broadly 

screening and sequencing positive samples may 

maximize the probability of detecting potential 

pathogens, for groups that are likely to contain 

unexpected or undescribed species, such as 

Crithidia. A similar approach uses species-specific 

primers coupled with broad-range primers, 

allowing for the detection of unexpected species 

(Stevanovic et al. 2016; Szalanski et al. 2016; 

Tripodi et al. 2018).  

FUNGI 

Similar to other spore-producing pathogens, 

visual detection of microsporidian spores at 400x 

is common and spore intensities can be assessed in 

slide-mounted tissues, homogenized gut samples, 

or feces smeared onto a hemocytometer (Human et 

al. 2013). The infective spores are the most readily 

distinguishable life stage of the microsporidia, as 

vegetative intracellular growth is cryptic and often 

undetectable by microscopy; however, methanol 
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fixation and Giemsa staining can reveal these 

growth stages within tissue (Fries 1988). Spores of 

most bee-infecting microsporidia species are 

highly refractive in phase contrast microscopy and 

approximately 5 µm long. By scanning multiple 

visual fields at an appropriate magnification (e.g., 

400x), repeated spore counts can be used to 

quantify infection levels as a concentration of 

spores per milliliter of homogenized tissue 

(Human et al. 2013) or categorized on a relative 

scale, such as the one used by Cordes et al. (2012) 

for microsporidia: low infection when <2 spores, 

moderate when 2-20 spores, and high infection >20 

spores/ visual field (Cordes et al. 2012; Human et 

al. 2013). Distinguishing different species or even 

genera of microsporidia using light microscopy 

can prove difficult as the gross morphology of 

spores is similar across the group, although 

species-specific tissue pathology has been noted 

(Plischuk et al. 2015). PCR has higher resolution for 

detecting and distinguishing different 

microsporidia species, and species-specific 

primers have been developed for V. apis, V. ceranae, 

and V. bombi (Blaker et al. 2014; Erler et al. 2012; 

Graystock et al. 2020; Klee et al. 2006). Microscopy 

and PCR are often used in combination to 

maximize probability of detection while also 

assessing presence and intensity of sporulating 

infections, and are therefore complementary 

approaches (Blaker et al. 2014; Calhoun et al. 2021).  

Entomopathogenic fungi with hyphal growth, 

such as chalkbrood (Ascosphera spp.), are 

uncommon in bumble bees and usually detected 

visually, based on the presence of hyphae in the 

abdominal cavity and the tissues of the alimentary 

tract (Kissinger et al. 2011; Macfarlane 1976; 

Maxfield-Taylor et al. 2015). Chalkbrood produces 

visible hyphae that cover the bee carcass in late 

stages of infection, but this pathology has only 

been seen in larval infections of non-Bombus bees 

(Schmid-Hempel 1999). Detection in bumble bees 

could include visual inspection via microscopy at 

low magnification (10–40x), examination of slide-

mounted tissues at higher magnification (200–

400x), culturing and isolation for morphological 

identification of reproductive structures, as well as 

molecular screening using broad-range or specific 

primer pairs (James & Skinner 2005; Macfarlane 

1976; Maxfield-Taylor et al. 2015). 

 

NEMATODES 

Due to their relatively large size, bumble bee-

associated nematodes can be detected during 

dissections of the metasoma at low magnification 

(10–40x). Sphaerularia bombi is the most commonly 

encountered nematode parasite in bumble bees, 

although it is primarily restricted to queens 

(Alford 1975; Macfarlane et al. 1995). The 8–20 mm 

long cucumber-like inverted uterus of a mature 

female worm in the abdomen of the host is readily 

identified through dissection (Alford 1969; 

Plischuk & Lange 2012). Juveniles and eggs of S. 

bombi can also be detected in the feces of bees and 

quantified via a hemocytometer (Jones & Brown 

2014). Mermithids are rarely recorded parasitizing 

bumble bees, but are often large (e.g., 46 mm in 

length) and easily detected during dissections at 

low magnification (Rao et al. 2017). The parasitic 

stages of mermithids lack the morphological 

characters to distinguish species, thus molecular 

characterization is recommended (Kubo et al. 2016; 

Tripodi & Strange 2018).   

DISCUSSION 

It is apparent that bumble bees have a 

considerable number of endosymbionts, which can 

be benign or cause sublethal or lethal pathology to 

their hosts. We now have techniques for detection 

and identification of most of these endosymbionts, 

yet pathologies are understudied and the impacts 

of detected pathogens are often unknown, 

particularly in diverse bumble bee host species 

beyond the relatively well-studied B. impatiens and 

B. terrestris (Cameron & Sadd 2020). It is likely that 

many species and strains remain to be described, 

and there is insufficient effort devoted to 

monitoring their populations in the wild. We have 

strong evidence that the commercial trade, both 

national and international, that has developed in 

bumble bees for use in crop pollination has 

facilitated the dispersal of many of these 

endosymbionts to non-native ranges, including 

around the world, and their introduction (through 

spillover) to wild bees. Spillover from honey bees 

(Apis mellifera) to bumble bees may also be a 

significant source of infection (Alger et al. 2019; 

Nanetti et al. 2021; Pislak Ocepek et al. 2021).  

 As we have pointed out, there are many 

examples of knowledge gaps on the topic of 

bumble bee endosymbionts of concern, with many 
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recent discoveries. Some have been facilitated by 

the development of new analytical techniques, 

such as molecular screening. As additional surveys 

utilizing these techniques are conducted it is likely 

that additional species will be discovered, and that 

we will learn more about their geographical 

distributions. Just as plans are developing for 

national monitoring program for native bees 

(Woodard et al. 2020), plans should be laid for 

monitoring the distribution, diversity, and 

abundance of their parasites and pathogens.  

 Endosymbionts are only one category of 

parasites and pathogens that can affect bumble 

bees, and we address elsewhere the ectosymbionts 

that can also infect them (Evans et al. 2023), as well 

as the potential risk that hive products such as wax 

and pollen pose to wild bumble bee and other 

pollinators. Together, this large number of bumble 

bee symbionts, in the context of a large and 

growing national and international commercial 

trade in these important pollinators, demonstrates 

the need for regulations that will help to prevent 

their spread, and the associated risk to wild 

pollinators (Strange et al. 2023).  
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